
* Fermi National Accelerator Laboratory 

FBP.MILAB-Conf-80/64-THY 
July 1980 

Introduction to Gauge Theories of the Strong, 
Weak, and Electromagnetic Interactions 

CBRIS QUIGG 
Fermi National Accelerator Laboratory* 
P.O. Box 500, Batavia, Illinois 60510 

Lectures given at the NATO Advanced Study Institute, "Tech- 
niques and Concepts of Eigh Energy Physics," held at St. Croix, U.S. 
Virgin Islands, July 2-13, 1980. 

2 ‘Operated by Universities Research Association Inc. under contract with the United Stales Department of Energy 



Prologue 
Chapter 1. 

A. 
B. 
C. 

Chapter 2. 
A. 
B. 
C. 
D. 

Chapter 3. 
A. 
B. 
C. 

Chapter 4. 
A. 
B. 
C. 
D. 

Articles of Faith 
Leptons 
Quarks 
The Fundamental Interactions 
The Idea of Gauge Invariance 
Gauge Invariance in Classical Electrodynamics 
Phase Invariance in Quantum Mechanics 
Phase Invariance in Field Theory 
Summary 
Non-Abelian Gauge Theories 
Motivation 
Construction 
Conclusions 

Chapter 5. 
A. 
B. 
C. 
D. 
E. 
F. 

Chapter 6. 
A. 
B. 
C. 

D. 
E. 
F. 

Spontaneous Symmetry Breaking 
The Idea of Spontaneously-Broken Symmetries 
Spontaneous Breaking of Continuous Symmetries 
The Higgs Mechanism 
Spontaneous Breakdown of a Non-Abelian Gauge 
Symmetry 
The Weinberg-Salam Model for Leptons 
Structure of the Theory 
Properties of the Gauge Bosons 
Neutral Current Interactions 
Incorporating Aadrons 
The Higgs Boson 
Open Questions 
Quantum Chromodynamics 
Stability of Color Singlets 
The QCD Lagrangian 
Consequences of an Interacting Field Theory 
of Quarks and Gluons 
Charge Renormalization in QED and QCD 
Perturbative QCD: An Example 
Radiative Corrections to Deep-Inelastic 
Scattering 
Status of QCD 
Grand Unification 
Motivation 
SU(51 
Omne Ignotum Pro Magnifico 

G. 
Chapter 7. 

A. 
B. 

Chapter 8. 
Acknowledgments 
Problems 
References 

CONTENTS 

1 
3 
4 
5 

17 
21 
23 
26 
28 
32 
33 
33 
34 
38 
40 
40 
44 
46 

49 
53 
53 
61 
66 
69 
74 
78 
80 
82 
88 

91 
96 

102 

105 
114 
115 
115 
116 
124 
125 
126 
132 



INTRODUCTION To GAUGE TSBORIES OF TBB STRONG, 

WEAK, AND ELECTROMAGNETIC INTERACTIONS 

Chris Quigg 

Fermi National Accelerator Laboratory* 
P.O. Box 500, Batavia, Illinois 60510 

PROMGUB 

Arthur Wightman (1968) wrote in the thirteenth edition of the 
Encyclopaedia Brittanica that "Running through the theoretical 
speculation since World War II has been the idea that the observed 
particles are not really elementary but merely the states of some 
underlying single dynamical system. Such speculations had not led 
very far by the 1960s." The past dozen years have seen a revolution 
in the prevailing view of elementary particle physics. We now 
believe that a fundamental description of subnuclear physics must be 
based upon the idea that strongly-interacting particles' (hadrons) 
are composed of quarks. Together with leptons, such as the electron 
and neutrino, quarks seem to be the elementary particles--at leastat 
the present limits of resolution. It also appears that all of the 
fundamental interactions of the quarks and leptons are consequences 
of various gauge symmetries and may be attributed to the exchange of 
vector bosom. 

The experimental support for this new point of view is multi- 
farious and impressive, if largely circumstantial. It derives from 
the taxonomy of hadrons, the evidence for pointlike constituents 
within hadrons, the discovery~of the quasiatomic spectra of the heavy 
mesons q/J and T, the successful prediction of charm, and the success 
of the Weinberg-Salam model with its implication of neutral weak 
currents. According to optimists, a grand synthesis of the strong, 

Operated by Universities Research Association Inc. under contract 
with the United States Department of Energy. 



C. QUIGG 

weak, and electromagnetic interactions is already at hand. A number 
of experiments are being mounted to search for the proton instability 
implied by specific "grand unified" theories. Already the first 
steps are being taken toward a super unification that incorporates 
gravitation. 

These lectures are intended to provide an elementary intro- 
duction to the main ideas and consequences of gauge theories of the 
fundamental interactions. By elementary I mean that no great 
facility with the subtleties of field theory will be presupposed. 
Most of the important concepts and many of the experimental applica- 
tions of gauge theories require no mOre than the ability to compute 
simple ("tree-graph") Feynman diagrams. Such computations will be 
stressed, at least in the Problems, because I believe one cannot 
possess the subject matter without them. On the other hand, higher- 
order corrections and the renormalization program will be mentioned 
only in passing. 

In addition to keeping the mathematical level as low-brow as 
possible, I have tried to emphasize the basic concepts and to keep 
the organization and logic of the enterprise in plain view. The 
assumptions leading to the theories of current interest will also be 
set out in detail. From this approach it is hoped that there will 
emerge an appreciation of what has been accomplished in present-day 
theories and a recognition of their shortcomings; a feeling for what 
is elegant and what is artificial. In the end, of course, we wish to 
apply these theories not only to experments past, but also to 
experiments future. Undoubtedly the assiduous student will begin to 
develop an understanding of the great questions that lie before us 
and an instinct for incisive experimental thrusts! 

The plan of these notes is as follows. Chapter 1 is devoted to 
a brief evocative review of current beliefs and prejudices that form 
the context for the discussion to follow. The idea of Gauge 
Invariance is introduced in Chapter 2, and the connection between 
conservation laws and symmetries of the Lagrangian is recalled. Non- 
Abelian gauge field theories are constructed in Chapter 3, by analogy 
with the familiar case of electromagnetism. The Yang-Mills theory 
based upon isospin symmetry is constructed explicitly, and the 
generalization is made to other gauge groups. Chapter 4 is concerned 
with spontaneous symmetry breaking and the phenomena that occur in 
the presence or absence of local gauge symmetries. The existence of 
massless scalar fields (Goldstone particles) and their metamorphosis 
by means of the Iiiggs mechanism are illustrated by simple examples. 
Th,e Wzinberg-Salam model is presented in Chapter 5, and a brief 
resume of applications to experiment is given. Quantum Chromody- 
namics, the gauge theory of colored quarks and gluons, is developed 
in Chapter 6. Asymptotic freedom is derived schematically, and a few 
simple applications of perturbative QCD are exhibited. Details of 
the conjectured confinement mechanism are omitted. The strategy of 
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"grand unified" theories of the strong, weak, and electromagnetic 
interactions is laid out in Chapter 7. Some properties and conse- 
quences of the minimal unifying group SU(5) are presented, and the 
gauge hierarchy problem is introduced in passing. The final chapter 
contains an essay on the current outlook: aspirations, unanswered 
questions, and bold scenarios. 

Many of the topics addressed here are treated in far greater 
depth and detail in excellent summer school lectures or review 
articles, as well as the original literature. References will be 
made to these at appropriate points. It is my hope that, in addition 
to providing a self-contained introduction to gauge theories, these 
notes will make this valuable literature more accessible to the 
beginner. 

3 

1. ARTICLES OF FAITH 

Today, many theorists are expressing in forceful terms their 
optimism that a grand synthesis of natural phenomena is at hand. To 
these visionaries, a unified description of the strong, weak, and 
electromagnetic interactions no longer seems a distant dream. 
Indeed there are those who argue that the unification has already 
been accomplished in principle , and that only gravitation remains to 
be incorporated. 

What are the reasons for this unbounded confidence? Three 
important ingredients are the success of the quark model of hadrons, 
the remarkable triumphs of gauge theories of the weak and electro- 
magnetic interactions, and the nonobservation of free quarks. 

The quark model has long been known to provide a systematic 
basis for hadron spectroscopy. More recently we have come to 
appreciate the quark-parton picture as a quantitative phenomenology 
of deeply-inelastic lepton-hadron scattering. In the realm of 
electron-positron annihilations, the successful predictions of the 
pointlike character and the magnitude of the cross section for 
inclusive hadron production and of hadron jets at high c.m. energies 
have been impressive. Finally, the interpretation of high trans- 
verse momentum phenomena in hadron-hadron collisions in terms of 
hard scattering of pointlike constituents is extremely seductive. 

The initial triumph of unified theories of the weak and electro- 
magnetic interactions is aesthetic. 1n place of the serviceable low- 
energy phenomenology of the Fermi theory we now have an acceptable 
field theory which is renormalizable and unitary. The gauge theory 
Solution to the unitarity problems of the Fermi theory is not 
unique-one can imagine Nature resorting to brute force techniques to 
enforce unitarity-and it has its price, which is the introduction of 
several new particles. The minimal (and therefore most appealing) 
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set of hpth_etical pgrticles is composed of the intermediate vector 
bosons W , W , and 2 , and a neutral Aiggs scalar Ii, none of which 
has been observed. However, we do have some circumstantial evidence. 
The neutral current interactions mediated by Z" have been found to 
occur with approximately the strength of the more classical charged 
current interactions. Their properties match in great detail the 
predictions of the Weinberg-Salam model. 

We have come to terms with the nonobservation of free quarks by 
postulating that they are perpetually confined within hadrons. No 
thoroughly convincing mechanism of quark confinement has yet been 
devised, but it is widely held that quantum chromodynamics (or QCD), 
a gauge theory of colored quarks and gluons, will provide the 
solution. Because QCD is an asymptotically free theory, it would 
answer as well the old question, "Bow can quarks behave as free when 
they are bound up in hadrons?" Lastly, the success of the QCD- 
inspired quarkonium description of the J/$ and T families of heavy 
mesons adds to the appeal of this confinement scheme. 

Let us next briefly survey the fundamental constituents and 
elementary interactions as we now know them. The purpose of this 
section is to recapitulate very telegraphically what we think we know 
and why we believe what we believe. 

A. Leptons 

The leptons experience the weak and electromagnetic (not to 
mention gravitational) interactions, but not the strong interac- 
tions. All are spin-% objects that are pointlike, which is to say 
structure1 ss, at the curren 
(511 keV/c'), muon (106 MeV/c ) 5 limits of resolutio . The electron 

and tau (1782 MeV/c') are all firmly 
established, as are the elpctron's neutrino (< 60 eV/c2) an3 the 
muon's neutrino (< 650 keV/c ). The tau's neutrino (< 7.50 MeV/c ) is 
presumed to exist, although this has not been demonstrated directly. 
It is still a logical possibility, though not an appealing one, that 
u E ).I Provided that v exists as a distinct, sequential lepton, 
a'grea? deal is known al& its interactions from the study of T- 
decays. Specifically, it is known to couple left-handedly to 'I with 
strength no less than l/7 of the universal Fermi coupling. We shall 
assume that the 'C -V coupling is indeed of universal strength. 
(One may hope that t&is will be confirmed-ljn due course by a 
measurement of the T lifetime: T(T) = 3 x 10 sec. is expected.) 
Then the leptonic charged weak current can be described in terms of 
the weak-isospin doublets 

'Preliminary evidence against the we-VT identity has been 
presented by Hulth (1980). 
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i”,lL (“::I L (“2 
L 

where the subscript L denotes a left-handed, or V-A, structure. In 
other words, the charged current has the form' ii y (1 - y )e, etc. 
This structure leads as well to a correct descript%of thdleptonic 
neutral weak current. 

Notwithstanding this orderly pattern, many questions arise. 
hiy are there three doublets of leptons? Will more be found? What 
is the pattern of lepton masses? Is lepton number conserved abso- 
lutely? Are the neutrinos exactly massless? Is the separate 
conservation of electron-number, muon-number, and tau-number an 
exact or only approximate statement? Do neutrino oscillations occur 
in nature? 

Several recent experiments and many theoretical speculations 
bear on the last three points. A measurement of the end of the (3- 
spectrum in tritium decay at the Institute for Theoretical and 
Experimental Physics in Moscow (Lyubimov, et al., 1980)yields a 
nonzero value for the mass of the electron's antineutrino: 
M(V) = (34.3 2 4) eV/c . This very interesting suggestion, which 
wou d carry important implications of a cosmological nature, re- 'I 
quires independent confirmation. Other observations, including a 
measurement of v -induced disintegration of the deuteron at the 
Savannah River Resctor (Reines, et al., 1980), have been adduced as 
evidence for neutrino oscillations, which would imply a mass differ- 
ence among neutrinos and violation of electron-number conservation. 
All existing evidence requires an imaginative interpretation, so the 
case for neutrino oscillations (like that for a neutrino mass) 
remains unproved. But this is obviously an area to be watched with 
interest. 

B. Quarks3 

Quarks experience all of the known interactions: strong, weak 
and electromagnetic, and gravitational. Like the leptons, they are 
spin-% particles which are pointlike at the current limit of eesolu- 
tion. Quarks were proposed as a means for understanding the basis of 
the SU(3) classification of the strongly-interacting particles 

'The Dirac algebra conventions are those of Bjorken and Drell (1964, 
1965) , except that& = 2m. 

'For comprehensive reviews, see Lipkin (1973), Rosner il974, lg80), 
Dalitz (1977), Hendry and Lichtenberg (1978), Greenberg (1978), 
Close (1979). 
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(hadcons). Ordinary mesons (those known to exist before November, 
1974) occur only in SU(3) singlets and octets. The pseudoscalars 
include 

fl(957) - singlet ll+TIolr- (140) 
n (549) 

K+KvK-(497) 
octet . 

Baryons occur only in octets, such as 

P# n (940) 
A (1115) 

c+, Lo, z- (1192) 
so :- , - (1315) 

and decimets, such as 

A 
++ , A+, A", A-(1232) 

*+ *o *- 
y1 , Yl I Y1 (1385) 

E 
*o *- 

, z (1530) 

a- (1672) 

No higher representations are indicated. This is a much more 
restrictive statement than the mere fact that SU(3) is a good 
classification symmetry, and it requires explanation. 

The spectroscopy of "ordinary" particles can be summarized by 
the hypothesis (Gell-Mann, 1964; Zweig, 1964a, b, 1965) that there 
exists a fundamental triplet of quarks (9, down, strange), as shown 
in Fig. 1, and that mesons are composed of G?j: 

while baryons are composed of qqq: 
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Fig. 
SU(31 

1: 
. 

Weight diagram for the fundamental (3 representation of 

These rules exhaust the representations seen prominently in Nature. 
It remains, of course, to understand why only these combinations of 
quarks and antiquarks are seen, or to discover under what circum- 
stances more complicated configurations such as (q<qc or qqq<q or 6q) 
might arise. 

Since free quarks have not been isolated,' the properties of 
quarks are known rather indirectly but, we will argue, convincingly. 
Let us now discuss these in turn. 

Quarks have baryon number l/3; antiquarks have baryon number 
-l/3. This is evident from the fact that three quarks make up a 
baryon. 

The quarks also carry fractional electric charge. The Gell- 
Mann-Nishijima formula for displaced charge multiplets, 

Q = I3 + 4Y = I3 + +(B + S) , 

implies quark charges 

'A recent review is that of Jones (1977). Some evidence for frac- 
tionally charged bulk matter has been presented by LaRue, et al. 
(1977, 1979, 1980). 
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eu = 2/3 , ed = es = -l/3 

The same assignments follow directly from examination of the baryon 
decimet: 

A++ = “Ull 

A+ = uud Q- = sss 

A0 = udd 

A- = ddd 

A number of other tests of these assignments have been carried out. 
We recall three such tests. 

Githin the quark model, the leptonic decays of vector mesons, 
V" -t &+a-, proceed by the annihilation of a quark and antiquark into 
a virtual photon which disintegrates into the lepton pair. as shown 
in Figure 2. Apart from kinematical factors , the (reduced) rate for 
leptonic decay is prprtional to the square of the quark charge--the 
strength of the yqq coupling--and the probability for quark and 
antiqu3rk to meet, which is given in a nonrelativistic description by 
IJlwl c the square of the wavefunction at zero quark-antiquark 
separation. 

rcv” -+ R+I1-) = i-(9 -t !2,+!2-) xH 2 
V = K.e q2 l I$(O) I2 . 

We assume that to first approximation the wavefunctions are the same 
for the light vector mesons p(770), w(784), @(1019). It is then 
straightforward to compute the square of the effective quark charge 
for the three cases: 

po = u;; - dx] + eq2 5 [&($.+$)I' = $ ; 

lJjo = u: + ds] + et = [$(f-$12 = 2 ; 

cp” = s; . 

We therefore expect the reduced leptonic decay rates to be in the 
ratio 

Ir (PO: : T(wO) : Ti.($J :: 9 : 1 : 2 . 
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9 e- 
v 

G e+ 

Fig. 2: Quark-model description of the decay of a neutral vector 
meson into a lepton pair. 

Fig. 3: The Drell-Yan process in TN + R+R- + anything. 

Experimentally, the ratio is5 

(8.7 t 2.9) : 1 : (2.8 + 0.8) , 

which is in reasonable agreement, considering the crudeness of our 
approximations. 

A second test has been made in the production of lepton pairs in 
pion-nucleon collisions. We regard this reaction as the annihi- 
lation of an antiquark from the pion with a quark from the nucleon, 
as illustrated in Fig. 3. The pr+oductio_n of high-mass muon pairs has 
been studied in collisions of TI and 71 on Carbon 

'See Particle Data Group (1980) for the decay rates and primary 
references. 
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II- (;h) 

12 C (1811 + 18d) 
=18x$ 

u = iaed2 
1' 

lI+ (u;i, 
=l13xg 

We therefore expect that 

gh-c+“+“-+...) = 4 
o(n+c + p+p- t . ..I 

, 

and this expectation has been confirmed by experiment as reviewed by 
Pilcher (1979). 

A third test is provided by deeply-inelastic lepton-nucleon 
scattering. Taking out overall coupling strengths, the cross sec- 
tion U((lN + J?' + anything) measures a "structure function" which is 
characteristic of the target.' 

(i) The reaction VT + u- t anything corresponds to the ele- 
mentary process Vd + p-u. Thus, the structure function F2(VT) 
counts the number of d-quarks in the target T. 

(ii) The reaction VT+ pt + anything 
mentary interaction vu + u+d. 

proceeds via the ele- 
Hence the structure function 

F2(v~) counts the number of u-quarks in the target. 

(iii) The reaction eT -t e t anything is characterized by the 
elementary interaction eq + eq. 
therefore cou "3" the number 

The structure function F2(eT) 
of up-quarks in the target, 

weighted by e = 4/9? plus the number of down-quarks in the 
target, weigh&d by ed = l/9. 

Consequently for an isoscalar target such as deuterium we expect 

F2 (eDI 3eu2 + 3e 2 
d 5 

F2(UD) t F2(?D) = 6 'la , 

'Se& the lectures by Perkins (1980) , and the book by Feynman (1972). 
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which is again in close agreement with experiment.' 

11 

We also know that the quarks have spin-*. Clearly if baryons, 
which are fermions, are to be made of three identical constituents, 
the constituents must be fermions rather than bosons. In addition, 
the observed hadron spectrum corresponds to the objects which can be 

2 
f rmed+(according to our earlier rules for flavor properties) from 

= Jr quarks. It is straightforward to work out the level struc- 
ture in the meson sector: 

cqs, + JPC = o-+, 1-- ; o++, 1++, 1+-, 2++, ... . 

L=O L=l 

This corresponds to the observed ordering of leve$?. Co-rina+t_ions-?f 
spin, parity, and charge conjugation such as J = 0 , 0 , 1 
which cannot be formed from spin-4 quark-antiquark pairs, are no; 
found in Nature. The analysis of baryon multiplets is similar but 
more tedious. Again the observed spectrum conforms to the quark 
model pattern. 

In addition to this successful classification scheme, there are 
some dynamical tests of the quark spin. Consider the cross sections 
for absorption of longitudinal or transverse virtual photons in 
deeply-inelastic electron scattering. Working in the Breit frame of 
the struck quark, it is easy to see that a spinless quark can only 
absorb a longitudinal (helicity = 0) photon, since angular momentum 
conservation forbids the absorption of a transverse (helicity 2 1) 
photon, as may be seen in Fig. 4. Similarly, a spin-f quark can 
absorb a transverse photon, but not a longitudinal photon (see 
problem 1). If quarks have spin-%, we therefore expect that 

cl 
Longitudinal"Transverse = 0 . 

This is in schematic agreement with experiment (Perkins, 1980). A 
related test comes from the analysis of the angular distribution of 
hadron jets produced in electron-positron annihilations, which is 
observed to be identical to the production angular distribution of 

7These predictions are shared by the Han-Nambu (1965) model of 
integrally-charged quarks, and it is notoriously difficult to draw 
distinctions (Lipkin, 1979; Chanowitz, 1975). Properties of the 
n(549) and n'(958) strongly favor the fractional charge assignment 
(Chanowitz, 1980). 
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Incident Outgoing ~ 

al 
e---q-- 

L, 
=0 0 

b, T-----4--- 2 =*I 0 

--- -e-9-- 
o I 

---- y- I 

Fig. 4: (a) Absorption of a longitudinal photon by a spinless par- 
ton is allowed by angular momentum conservation. (b) Absorption of 
a transverse photon is forbidden. 

ee + - + p+p-. 

process e+e- 
Th_is implies (see problem 2) that the elementary 

-f qq corresponds to the pair production of spin-4 
objects. 

Quarks have still another property, known as color. At first 
sight, the Pauli Prin iple seems not to be respected in the wave- 
function for the A+'. This is a uuu state with spin = 3/2, 
isospin = 3/2, and angular momentum zero, which is a symmetric 
wavefunction of three identical fermions. Unless we are prepared to 
forgo the Pauli Principle or the quark model, it is necessary to 
invoke a new, hidden degree of freedom which permits the wavefunction 
to be antisymmetrized (Greenberg, 1964). In order that a three-quark 
wavefunction can be antisymmetrized, it is necessary that each quark 
flavor come in at least three distinguishable colors. If there were 
more than three quark colors, the unpleasant possibility of distin- 
guishable (colored) species of proton would have to be faced, 
contrary to observation. 

While the introduction of color would at first appear to be 
unnatural and artificial, subsequent observations have given strong 
support to the color hypothesis.a A number of observable= are 
sensitive to the number of distinct species of quarks. AS we have 
seen in Problem 2, the inclusive cross section for electron;positron 
annihilation into hadrons is described by the process e e + qq, 
where the quark and antiquark materialize with unit probability into 
the observed hadron jets. The ratio 

'For a recent review, see Greenberg and Nelson (1977). 
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R : o(e+e- + hadrons) 

o(e+e- + p+p-) 

is then simply given by 

R = c ?I 
quark 
species 

At c.m. energies between about 1.5 and 3.6 GeV, up, down, and srange 
quarks are kinematically accessible. In the absence of hadronic 
color we would therefore expect 

2 2 2 Ro, = eu + ed + es = 

whereas if each flavor comes in three colors, 

R3 = 3 
[ 

eu2 t ed2 + es2 1 

2 
5 , 

we should have 

= 2 

Experiment decisively favors the color-triplet hypothesis, as shown 
in Figure 5. 

A similar count of the number of distinguishable quarks of each 
flavor is provided by the branching ratios for decay of the tau- 
lepton. Within the quark model, T decays may be described as shown 
in Fig. 6, namely by the decay of r into V plus a virtual 
intermediate boson (W 1. The intermediate boson zhen disintegrates 
into all kinematic&ly Cabibbo accessible fermion-antifermion pairs: 
(e-c ), (u-c I, (udB). The universality of charged-current weak 
inteEactions?mplies equal rates for each of these decays. Thus in 
the absence of color, we expect 

B = 
r(r + e-VeVT) 1 

0 r(T+all) = 5 

If quarks come in three colors, 
have 

(;h,) is augmented to 3(<dS), and we 

1 B3 = 7 
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Fig. 5: The ratio R 5 o(e+e- + hadrons)/o(e+e- -t ~+)1-) [from 
Spinetti, 19791. 

d ii S ii 

Y W- 

si 

I 
I 
I “r 
4 

f 
r- 

n2t$ 

Fig 6: Semileptonic decays (weighs l), and Cabibbo favored (weight 
COS2 e ) and suppressed (weight sin ec) nonleptonic decays of the 
VleptL. 
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The experimental branching ratio (Particle Data Group, 1980) is 

15 

B 
=P 

= (17.44 + 0.85)% 

in accord with the color hypothesis.' 

Finally let us notice that the quark model prediction for the 
decay no + yy, the annihilation of quark and e"tiqAark into t$ro 
photons, is sensitive to the wmber of distinct quark loo?s that nay 
contribute. "his r'ecay rate is aiso decisively in accord with the 
hmthesis that the light quarks u,<,s are color triplets. 

Just as there are several doublets of leptons, different quark 
flavors have made themselves known to us through the strong interac- 
tions. Ordinary matter (protons, neutrons, pions) signals the 
existence of the up and down quarks. The strange particles (hyper- 
ens, kaons) were discovered in the associated production reactions 

nN + KY , 

which implied the existence of a new additive quantum number dubbed 
strangeness, which is borne by the strange quark. Similarly, the 
quantum number called charm might well have been discovered through 
the observation of associated charmed-particle production in the 
reaction 

TIN + DC0 , 

although it was in fact discovered by more indirect means. 

The observation of hadrons with various internal quantum num- 
bers (isospin, strangeness, charm,...) led to the use of 
SLJ(2,3,4 ,...) as symmetries of the strong interaction. These inter- 
nal symmetries serve both for the classification of hadrons [cf. 
SU(3) and the evolution of the quark model 1 and for dynamical 
relations among strong interaction matrix elements. Given the very 
different masses of the nonstrange and strange particles (and hence 
of the nonstrange and strange quarks) it has been difficult to 
understand how SU(3) symmetry could arise dynamically. Furthermore, 
both N(2) of isospin and N(3) are excellent but not exact strona 

'A refined estimate for the leptonic branching ratio is 17.75% 
(Gilman and Miller, 1978; Rawamoto and Sanda, 1978). 
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interaction symmetries. Isospin invariance holds within a few 
percent and SU(3) is reliable within lo-20%. 

How can this symmetry breaking be understood? The traditional 
view has been that SV(2), 
in or'gin. 

or isospin, violations are electromagnetic 

1 For example, 
MeV/c 

the neutron-proton mass difference of 1.23 
("wrong" sign!) and the 7: - $ mass difference of 4.60 MeV/c 

are of a size to be consistent with an origin as electromagnetic 
perturbations. Similarly, deviations from exact SU(3) symmetry have 
been accounted for by mass differences, which are interpreted in 
terms of a "medium-strong" interaction' that transforms as a member 
of an SUC31 octet (specifically as AS). 

But how do these mass splittings actually arise, and why do 
various quark flavors exist? Within the strong interactions, 
flavors do not appear to have any essential role, but only to 
contribute to a richness. I" contrast, if we look to the weak 
interactions, the importance of being a flavor is more readily 
apparent. Because of the family patterns that are implied by the 
charged-current weak isospin doublets 

” 
( 1 

d' L 

’ t 
( 1 

b' L 

flavors appear to have specific roles to play. As we shall see 
shortly, the charmed quark was needed and had a function to fulfill 
in the weak interactions in advance of its discovery. On the other 
hand, charm and other new flavors seem merely to be tolerated by the 
strong interactions. 

An evolving contemporary view' is that flavors are not funda- 
mental from the point of view of the strong interactions. The 
elementary strong interactions are then “tasteless,” and are sensi- 
tive only to the color charge of the constituents. According to this 
view, the breaking of flavor SU(N) symmetry is then ascribed to quark 
mass differences 

m cm cm <El cm c... !.I d s c b 

*This view is expounded in the reprint volume by Gell-Han" and 
Ne'eman (1964). 

'SOme representative discussion of the problem of quark masses may be 
found in Weinberg (1977) and Langacker and Pagels (1979). 
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and quark masses are thought to arise from the spontaneous symmetry 
breaking of the weak interactions. 

This mode of thinking is at the moment not a complete expla- 
nation. We do not know why so many "fundamental" fermions should 
exist, or why the pattern of masses and mixing angles is what is 
seen. It is hoped that the further unification of elementary forces 
will provide at least partial answers to these and related questions. 

C. The Fundamental Interactions 

We now believe that the elementary interactions of the quarks 
and leptons can be understood as consequences of gauge invariances of 
the fundamental Lagrangian. These ideas will be derived in a logical 
sequence in the succeeding chapters. For the moment, let us simply 
recall scnne basic aspects of the familiar gauge theories and their 
consequences. 

To review gauge theories of the weak and electromagnetic intee- 
actions, we consider the Weinberg (1967)~Salam (1968) theory of 
leptons in a world with two lepton 'generations," represented by the 
weak isospin doublets 

r:, (“:lL 
L 

The electromagnetic current is given schematically by 

Jem = 
a “Y,” - iiY,lJ 

and the charged weak current, indicated by the weak isospin doublets, 
is 

,(9 = 
0 c ~iT+Y,(l - Y5) Jli , 

i 

where the composite spinors Qi represent 

“e 
4Jl = e e IJ, = 

( 1 

“u 

( 1 1-1 
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and the Pauli isospin matrices are 

T+=(I 1) ’ 

( 
1 

T3= o 

T-=(1 1) 

0 

1 
. 

-1 

In more explicit form, the charge-raising current is (see Problem 3) 

J(t) = 
0 3,Y,(l - Yg)e + 5UY,(l - Y5)U * 

In such models the weak neutral current contains a piece which 
completes the weak isovector: 

J(3) = 
a r, 1 $T3Y,U - Ys"iJi 

i 

= 4 
[ 

VeY,(l - Y5)Ve - eY,(l - Yg)e 

+ VpY,(l - Y5)Vv - )lY,U - Y5)lJ 1 * 

In addition, the symmetry breaking entailed in weak-electromagnetic 
unification contributes to the weak neutral current a piece propor- 
tional to J",", 
Thus, 

with strength governed by a weak mixing angle ew. 
the neutral current is 

J(O) = J(3) _ sin2 fj -p 
D CT WU 

= liVeYoU - Y,,V, + LeYo(l - v,,e 

+ RTY,(l + Ys)e + (e + P) 

with 



GAUGE THEORIES 19 

L= sin2BW-% , R= sin 

Notice that the electronic and muonic sectors remain disconnected, 
as required by the separate conservation of electron and muon number. 
We say that the leptonic neutral current is flavor conserving or 
diagonal in flavors. 

What of the hadronic current? According to Cabibbo's picture of 
weak-interaction universality, the hadronic charged current is re- 
presented by the weak-isospin doublet 

” 
( > de L 

, 

where 

de E d cos 0C + s sin 8C 

and 0 is the Cabibbo angle (see Problem 4). 
chargg-raising weak current is 

In other words, the 

J(+) = 
(J &,(l - Y5)doCOS ec + Uy,(i - yS)s*sin ec . 

We may ask why the hadron sector has an "extra," unused quark, that 
is why does the orthogonal combination 

73 = s cos ec- d sin ec 

not appear in the weak current. In a similar vein, why are quarks 
and leptons not more symmetrical? 

To investigate these questions further, let us form the 
Weinberg-Salem neutral current within the Cabibbo framework. It is 
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J(o) = J(3) _ sin2 e pm 
a a w 0 

= 4 - 
{ 

Uy,(l - Y5)U - &,(i - Y5)d CO*' ec 

- syu(l - y5)s sin' ec - sy,(l - y5)d sin eccos 0, 

- Zy,(i - Y,)S sin eccOs ec 
> 

- sin' e w $ ;y,u - $ zyad - $ sycrs 

Unlike the leptonic neutral current, the hadronic neutral current 
contains flavor-changing (d-s) terms. This is experimentally 
unacc$ptabl+e_hecause of the stringent upper limit on th+e$ecay rate 
for K + 11 UV and the small rate observed for K -f p p . It was 
shown by Glashow, Iliopoulos, and Maiani (1970) &at lepton-hadron 
symmetry could be restored and the flavor changing neutral currents 
eliminated by the addition of a second weak-isospin doublet 

C 

( > *e L 

involving the charmed quark (Bjorken and Glashow, 1964). The 
hadronic neutral current now assumes the diagonal form 

J(O) = 
* 4 b,(l - ys)" + +,(l - y5)c - ;iy,(l - y5)d 

- SY,(l - ys's 
> 

- sin' cdl 

The discovery-(Aubert, et al., 1974; Augustin, et al., 1974) of the 
family of (cc) bound states known as psions and the observation 
(Goldhaber, et al., 1976; Peruzzi, et al., 1976) of charmed particles 

which decay according to the (c, s e L pattern constitute a striking ) 
confirmation of the GIM hypothesis. 

Gauge theories also show considerable promise as descriptions 
of the strong interactions. Currently it is believed that quantum 
chromodynamics or QCD, a non-Abelian gauge theory of colored quarks 
interacting by means of massless, colored vector gluonS, is the 
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fundamental, underlying field theory of the strong interactions. 
The three quark colors are regarded as the generators of an Su(3) 
color group, which is not to be confused with the flavor SU(3) of up: 
down, and strange quarks. The strong interactions among quarks are 
then mediated by an SU(3)c octet of colored gluons. 

We shall argue that only color singlet objects may exist in 
isolation. Color confinement, as it is called, then provides an 
explanation of quark confinement: free quarks and free gluons will 
not be found. The arguments we have given in favor of color-triplet 
assignments for the familiar quarks do not imply that yet-to-be- 
discovered quarks must lie in the fundamental representation of 
SU(3) . 
theoryes. 

Further guidance may come from specific grand unified 
According to this view of the strong interactions, color 

is what distinguishes quarks from leptons. Since color plays the 
role of the (nonabelian) charge of the strong interactions and gluons 
are colored, they will interact among themselves by gluon exchange. 
We shall find in Chapter 6 that the strong coupling "constant" 
becomes small at very short distances. This property, which is known 
as asymptotic freedom may help to explain why quarks cannot be 
separated but behave within hadrons as if they are free particles. 

Before leaving this introductory section, let us review the 
experimental evidence for the existence of gluons. It is basically 
of two kinds. First, from energy-momentum sum rules in lepton- 
nucleon scattering, we find that only about half of the momentum of a 
proton is carried by constituents which interact weakly or electro- 
magnetically (i.e. by the quarks). Something else, electrically 
neutral and inert with respect to the weak interactions, must carry 
the rest. This role can be played by the gluons. Second, at c.m. 
energies exceeding 17 GeV, a fraction of electron-positron annihila- 
tions into hadrons+,display a three-jet structure instead of the 
familiar two-jet (e e + qq) structure (Mark-J Collaboration, 1979; 
PLUTO Collaboration, 1979; TASS0 Collaboration, 1979; JADE Collabo- 
Lyon, 2979). This is interpreted as evidence for the process 

qq + gluon, in which the gluon is radiated from an outgoing 
quark leading to the spatial configuration depicted in Fig. 7. 

With these concepts and aspirations as background, we now turn 
to the basic ideas that underlie gauge theories. The first of these 
is the notion of gauge invariance. 

21 
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Fig, 7: Three-jet structure of the final state 
ee + qqg. 

2. THE IDEA OF GAUGE INVARIANCE 

in the reaction 

The concept of gauge invariance,3 which (unlike Lorentz invari- 
ance) is a dynamical symmetry, arose from attempts by Hermann Weyl 
(1921)to unify gravity and electromagnetism through the use of a 
space-time dependent change of scale. Weyl's terminology, Eichin- 
varianz (Eich = gauge OL standard) has survived although his initial 
attempts were unsuccessful. 

Consider the change in a function f as we move from a point x 
to x t dx 

u li' 
In a space with uniform scale, it is simply lJ 

x -+x + dx 
P u u 

f -t f + (aPf)dXU 

But if in addition the scale, or unit of measure, changes from 1 at 
x to 1 G SGd$ at xP + dx 
bEcomes u' 

the value of the function at x,, + 2x P 

( 
f + (aFif)dxU 

I( 
1 + S"dx" 

) 

= f + (fSU + a,,f)dx' + @(dx)' . 

1-I To leading order in dx , the increment in the function f is 

cautsp)f . 

3The history of gauge invariance has been reviewed by Yang (1975, 
1977). 
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Key1 sought to identify S with the vector Fotential ku of electro- 
magnetism and thus t> incorporate electromagnetism into a 
geometrical theory. 

23 

Let us see why this is incorrect. Recall from elementary 
quantum mechanics that the classical four-momentum p goes over to 
the quantum-mechanical operator -iHa For a charge 2 particle, the 
replacement is P' 

P -eA -f 
lJ = P 

-iH(a 
P - (ie/tic)$,) . 

We can therefore carry out Weyl's program if we identify 

S 
!J = 

-(ie/flc)A 
Fi 

, 

so that instead of investigating invariance of the laws of physics 
under a change of scale, we require invariance under a change of 
phase: 

1 - 2 Apdx ' ) r: exp ( =$ Alldx'} . 

Following work by Fock (1927) and London (1Si7). Weyl began in 1929 
to study invariance under this phase change, but retained the 
terminology, "gauge invariance." 

A. Gauge Invariance in Classical Electrodynamics 

The physical appeal of gauge invariance stems from the old 
observation4 (Noether's Theorem) that to every continuous symmetry 
of the Lagrangian there corresponds a conservation law. This 
connection is reviewed in Problem 5. Let us first review the 
consequences of gauge invariance in classical electrodynamics. 

Maxwell's equation for magnetic charge, 

V’k = 0 

invites us to write 

B = VXA , 

'A very readable and worthwhile discussion appears in Hill (1951). 
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where A is the vector potential. 
will be 

This identification ensures that2 
divergenceless, by virtue of the identity 
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v.(vxA) = 0 

If we add an arbitrary gradient to the vector potential 

&’ A+VA , 

the magnetic field is unchanged, because 

g = Vx(A_tVN = Vx& . 

In similar fashion, the curl equation for the electric field 

aB 
0x2 = -;;ir" , 

which can be rewritten as 

invites the identification 

an 
E+iF;= -vv 

where V is known as the scalar potential. In order that the electric 
field remain invariant under the shift 

A + AtVA b-4 L 

we must also require that 

I 

" -f "-L&l 
c at 
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All of this can be expressed compactly in covariant notation. 
The electromagnetic field-strength tensor 

0 -El -E2 -E3 

F El O B3 -B2 
w 

=aA-aA = 
VP lJv 

E2 -B3 0 Bl 

E3 B2 -B1 0 

built up from AD = (V, 2, is unchanged by the "gauge transfor- 
mation" 

The fact that many different 4-vector potentials describe the same 
physics is a manifestation of the gauge invariance of classical 
electromagnetism. 

The remaining Maxwell equations, 

v.g = 4np = -V.&V2" 

and 

Vx(Vx% = -V2& + v (V l &I I 

(where A: aA/2t) correspond, in covariant form, to 

apF 
UV 

= a,(apAp) - apauAp, 

= -470" 

25 

Two consequences are irrmediately apparent. First, the electro- 
magnetic current J is conserved: " 
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a"g = (-1/4n) o(aPAp) - o(a"A,) 
> 

0 

where the d'Alembertian is a : ap'a . 
(a'A 

Second, 
L*rentz CJaKp 

the wave equation in 

becomes !J 
= 0) and in t)he absence of sources (J 

V 
= 0) 

CIAy = 0 , 

which has the form of a Klein-Gordon equation for a massless par- 
ticle. 

We see in these familiar results a relationship between 
invariance, 2 auge 

current conservation, and massless vector fields. Let 
us now attempt to understand these connections more precisely. 

B. Phase Invariance in Quantum Mechanics 

Suppose we knew the Schriidinger equation, but not the laws of 
electrodynamics. Would it be possible to derive (i.e. guess) 
Maxwell's equations from a gauge principle? The answer is yes! Let 
us trace the steps in the argument in detail. 

A quantum-mechanical state is 
Schrgdinger wavefunction q(x). 

described by a complex 
Quantum-mechanical obseevables in- 

volve inner products of the form 

which are unchanged under a global phase rotation 

q(x) + eie$(x) 

In other words, the absolute phase of the wavefunction cannot be 
observed and is a matter of convention. 

'For more on the connection between global gauge invariance and 
current conservation, see Bjorken and Drell (1965), c. 11; Hill 
(1951): Abers and Lee (1973), 51; and Wigner (1967). 
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This raises the question: can we choose one phase convention in 
St. Croix and another in Batavia? Differently stated, can quantum 
mechanics be made invariant under local phase rotations 

27 

Ilr(x) -+ eic(x)*(x) ? 

We shall see that this can be accomplished, but at the price of 
introducing an interacting field that we will construct to be 
electromagnetic field. 

The equations of motion always involve derivatives of I). But 
under gauge transformations these transform as 

all+(x) -f eiatx) 
[ 

au*(x) + it ap(N) W) 1 , 

which involves more than a mere phase change. The additional 
gradient-of-phase term spoils local phase invariance. Local gauge 
invariance may be attained, however, by the introduction of the 
electromagnetic field A . 

I-I 
Consider local phase rotations of the form 

l)(X) + eiqe(x)l$(x) 

where q is the electric charge of the particle specified by JI, 
accompanied by the local gauge transformation 

A,,(x) + AP(X) f ape(X) 

If the gradient a 
u 

is replaced by the gauge-covariant derivative 

g!J : ap- iqAu 

it is easily verified that under local phase rotations 

Consequently quantities such as $*a"$ are invariant under local 
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g=uw 
(ia $1 
nothln 

(W-e) transformations. Moreover, the form of the coupling 
between the electromagnetic field and matter is suggested (if 

,iquely d ictated) by local gauge invariance. 
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This example has shown the possibility of using local gauge 
invariance as a dynamical principle. With it as background, a more 
systematic treatment is now in order. 

C. Phase Invariance in Field Theory 

The basic object in field theories is the Lagrangian density 
S?'($(X), a~$(x)), from which is constructed the classical action 

/ 

m 

Action z dtL(t) = 
-02 J 

d4xpiP(cb(x), $$4x,, . 

The equations of motion of the fields follow from Hamilton's prin- 
ciple 

/ 

t2 
6 dtL(t) = 0 , 

5 

subject to the constraint that variations in the fields vanish at the 
endpoints. Satisfaction of Hamilton's principle is guaranteed by 
the Euler-Lagrange equations 

6.9 6.9 xjT= a~ 6( au44 
As an example, consider the Lagrangian for a free scalar field 

9 = 4[lavO12 - m2jQj2] 

from which the Euler-Lagrange equations lead to the Klein-Gordon 
equation 

(0 +m2)@ = 0 

A global gauge transformation on these fields, 
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$(x) + e iqe4 (x, 

auetx) + eiqG(avm(x)) 

29 

leads to infinitesimal variations 

69 = iq(&3)@ , 

6 ( a,+) = iq(68) a,$ 

The statement of global gauge invariance is that such transfor- 
mations leave the Lagrangian unchanged: 

By explicit computation we have 

69 = $ Se + 6:z$, sca,e) + FE@* + bsf * 6(alJQ*) 
u w 6(ap$ I 

= 
( 

6.9 
a~ 6ouw ) 

69 
iq@)$ + s(au+j is(~ - 04 + a*) 

= i68a u 8% 4 - 6;a",*) s4* ] = 0 
[ 

I 

u 
where the last step makes use of the equations of motion. Evidently 
we may identify the quantity in square brackets as a conserved 
current (density), 

JU = 
-iq 6(auo) 

[ 

Eg $- 6sf l +* , 

6ou$ ) 
I 

which satisfies 

aJ' = 0 u 

For the specific case of the massive scalar field theory, the 
conserved current 



30 C. QUIGG 

is immediately recognizable as the electromagnetic current. 

What are the consequences of local gauge invariance? The fields 
transform as 

$4x) + eiqew$(x) 

Terms in the Lagrangian that depend only upon the fields are left 
invariant, just as before. 
global gauge invariance. 

There are no consequences beyond those of 
However, as we saw in our discussion of the 

Schrodinger equation, gradient terms transform as 

ap~cx) + eiqecx) lap~cx)i + iqIa,ecx)leiqe(x)~(x) , 

which necessitate the introduction of a gauge-covariant derivative 

!a u$dx) E (a, - iqA,,(x))$(x) 

+ eiqetxj gpX) 

provided that 

A,,(x) + A,,(x) + ape(X) 

I 

Again the requirement of local gauge invariance prescribes the form 
of the interaction between radiation and matter. 

This time, let us look explicitly at the Dirac equation. The 
original Lagrangian 

2 free = 3rti-f”au - m)JI 

is replaced by 
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.9 = Yj(i$)5?U - m)$ 

= iJ(iy% 
u 

- m)$ + qfi'A,,Q 

= mYfree + JUAu 

where the (conserved) electromagnetic current has the familiar form 

We learned in our review of gauge invariance in classical electro- 
dynamics that 

F 
!JJ 

= 3,Au - 3 A 
UV 

is a locally gauge invariant quantity. 
term is therefore -%F Fuv, 

A possible kinetic energy 
where the choice of normalization guar- 

antees the correct, w#?ch is to say Maxwellian, equations of motion. 
Assembling all the pieces we therefore have 

SQEU = zfree + JuAu - ~~~~~~~ . 

A photon mass term would have the form 

.!z = 
Y 

-+m'AuA 
!J 

which obviously violates local gauge invariance because 

A"'R + (A’ + a&) (A~ c ape) f luau . 
u 

Thus we find that local gauge invariance has led us to a massless 
photon. (We shall see in Chapter 4 how this conclusion may be evaded 
by the non-perturbative effects of spontaneous symmetry breaking.) 
The fascinating history of measurements of the photon mass is 
admirably reviewed in many places, including Goldhaber and Nieto 
(1971, 1976), Kobzarev and Okun (1968), and Jackson (197(i). The best 
limit on the photon mass comes from the Pioneer 10 measurements of 

31 

I 
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the magnetic field of Jupiter (Davis, et al., 1975). The upper limit 
at 90% confidence level is 

M < 
Y 

4.5 x lo-16ev/c2 , 

which corresponds to a modified Coulomb potential of the form 

v s 
exp (-r/ro) 

, r 

with r > 4.4 x lo5 km. Subsequent space probes may be expected to 
improvg this limit further. 

We have now seen how global phase invariance leads to the 
existence of a conserved charge. The stronger requirement of local 
phase invariance requires the introduction of a massless gauge field 

91 
and restricts the possible interactions of radiation with matter. 

T e theory of electromagnetism (Quantum ElectroDynamics) is there- 
fore the gauge theory of the group of phase transformations which is 
the Abelian group U(l). We shall next investigate the generalization 
of these ideas to non-Abelian groups. The resulting theories are 
known as non-Abelian gauge theories, of Yang-Mills theories. 
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3. NON-AEIELIAN GAUGE THEORIES 

In this chapter we undertake the extension of our ideas about 
local gauge invariance to gauge groups more complicated than the 
group of phase rotations.6 We shall find that it is possible to 
enforce local gauge invariance by following essentially the same 
strategy as succeeded for electrodynamics. The principal difference 
(apart from algebraic complexity) will be the existence of 
interactions among the gauge bisons, which is a consequence of the 
non-Abelian nature of the gauge symmetry. As before, we proceed by 
example, developing the SU(Z)-isospin gauge theory put forward by 
Yang and Mills (1954) and by Shaw (1955). 

33 

A. Motivation 

The charge-independence of nuclear forces and many subsequent 
observations support the notion of isospin conservation in the 
strong interactions. What is meant by isospin conservation is that 
the laws of physics should be invariant under rotations in isospin 
space. Thus the neutron and proton must appear symmetrically. With 
electromagnetism "switched off," the difference between them4is 
purely conventional, and so are their names. The ground-state of BP would~imply the existence of two kinds of nucleons, just as the A 
demonstrated the need for three colors of quark. 

The Lagrangian for free nucleons, 

G? 
0 

= p 
i 

i-f+ 
u 

- m p + K 
) ( 

i$-$ - m n 
!J 1 

= ij(iypau - m)$ 

with the composite spinor 

P 
$ E ( 1 n 

, 

, 

leads to the Dirac equation. The free Lagrangian ?Z'o has a global 
invariance under isospin rotations 

&An excellent introduction, at a somewhat higher technical level, is 
given by Abers and Lee (1973). The problem of building gauge 
theories upon arbitrary gauge groups is addressed by Gell-Mann and 
Glashow (1961). 
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, 

where L.= (T 
2 = (CL 1' T2! 3 'I ) are the usual isospin (Pauli) matrices and 

a , CL ) 1s an arbitrary global gauge parameter. The in- 
varia& o$ th$ Lagrangian under global isospin rotations (69 z 0) 
implies the existence of a conserved isospin current density 

In analogy with electromagnetism we are led to ask whether we 
can require that the freedom to name the two nucleon states be 
available independently at every space-time point. Can we, in other 
words, turn the global SW(Z) invariance of the free field theory into 
local SU(2) invariance? 

B. Construction 

Tine construction of the theory proceeds just as in the Abelian 
case. If under a local gauge transformation the field transforms as 

$(a -f V(x) = G(x)$(x) , 

with 

G(x) E exp[+ C'$H] 

then the gradient transforms as 

a? 
+ G(a,Ji) + (a,,G)$ 

To ensure the local gauge invariance of the theory, we first con- 
struct a gauge-covariant derivative 

Ed = 
P 

~a~ - igB 
lJ 

where 
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serves as a reminder that the operators are 2 x 2 matrices in isospin 
space. The object BU is the 2 x 2 matrix defined by 

B 
P 

= %r.b , 

where the three gauge fields are b 
strong-interaction coupling constan? 

= (bl, b2, b3), and g is the 

The point of introducing the gauge fields and the gauge- 
covariant derivative is to obtain a generalization of the gradient 
which transforms as 

guJI + cap’$’ = G(9p$) 

Requiring this to be so will show us how B must behave under gauge 
transformations. By explicit computation t: e have 

guv = a!JJI’ - igB;Q’ 
= G(av$) + (aliG)jr - igB;(G$) 

G(au$) - igG(B,,$) I 

which may be solved to yield the condition 

-iqBIG* = -iqG(Bu$) - (apG) J1 , 

which must hold for arbitrary values of the nucleon field+. Regard- 
ing the transformation cond'tion as an operator equation and 
multiplying on the right by G -1 

, we obtain 

B' 
= GBvG 

-1 
u 

- ; (a,,G,G-1 
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While this transformation law may appear formidable at first 
sight, it has a very simple interpretation. Recall that in the case 
of electromagnetism the local gauge transformation was the phase 
rotation 

Gm = ,iqO(x) 

A transcription of the general transformation law is therefore 

A' 
P 

(a$3 G-l 

= A 
P 

- & l iq(a,e) = A,, + ag , 

just as before. For the case of isospin gauge symmetry the meaning 
of the transformation condition is that B is transformed by an 
isospin rotation plus a gradient term. 1, 

To this point in our construction of the gauge theory we have a 
Lagranqian given by 

22 = ijT @'a 
i u 

-m J, 
1 

= z. - d+,$ 

, 

namely a free Dirac Laqranqian plus an interaction term which couples 
isovector gauge fields to the (conserved) isospin current of the 
nucleons. To proceed further, we must construct a field-strength 
tensor and hence a kinetic energy term for the gauge fields. 

In the case of electromagnetism we had 

F = 
!JV 

= aVAP - iqA A - $A,, + iqA A 
VU N .v 

= ayAp - a A - iq[A 
liv v' "UJ 
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The commutator of the two vector potentials vanishes for electro- 
magnetism (because it is a theory based upon an Abelian gauge 
=y~etry), and we recover the familiar classical definition. 

For the SU(Z)--and indeed general--gauge theory, we similarly 
define 

F = 
W 

2 mu,. 9,l 

= a$,, - a,B, - igbj,. Bul 

Because the gauge symmetry is non-Abelian, the commutator of gauge 
fields does not vanish in general. It is easy to verify that F 
defined is a locally gauge-invariant form and that 

I.l" So 

itm = -4 trace 
(isospin) 

FP!Fw 

is an acceptable kinetic energy term. As in the Abelian case, no 
mass term of the form 

2 -m trace B% 
(isospin) ' 

is compatible with local gauge invariance. 

The final step in the construction of the gauge theory is to 
determine from the F F'" term in the Lagrangian the interactions 
among gauge bosons. P or the moment it will be sufficient to do this 
in a rather schematic fashion. In QED, only bilinear combinations of 
the gauge field occur in 9' 

Y' 
Thus we have only 

QED: 1 

Fig. 8 
Photon Propagator , 

, 

This reflects the well-known fact that sourceless QED is a free 
(noninteracting) field theory. In the SU(2) gauge theory, in 
contrast, trilinear and quadrilinear terms also appear in PYM. we 
therefore have 
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Gauge Field Propagator 

3-Gauge-Boson 
Vertex 

4-Gauge-Boson 
Vertex 

Fig. 9. 

The presence of the interaction terms, or vertices, is a signal that 
sourceless Yang-Mills is a nonlinear (interacting) field theory. 
The gauge fields carry isospin and hence couple among themselves. 
The nonlinearity [BV, 
gauge group. 

B,,] arises from the non-Abelian nature of the 

C. Conclusions 

Several examples have shown how gauge principles may be used to 
guide the construction of theories. Global gauge invariance implies 
the existence of a conserved current. Local gauge invariance 
produces massless vector gauge bisons, prescribes (or at least 
restricts) the form of the interactions of gauge bosons with sources, 
and generates interactions among the gauge bosons, if the symmetry is 
non-Abelian (see Problem 6). 

It is appealing to try to make use of observed symmetries of 
nature as gauge symmetries. This is indeed the course we shall 
follow in our later applications. However, the example of the Yang- 
Mills theory shows that success--in terms of agreement with experi- 
mental reality--is not assured in advance. Long-range forces 
between nucleons, mediated by massless vector quanta, are not ob- 
served. Therefore the Yang-Mills theory, based on the idea of 
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isospin invariance (or flavor symmetry) as the strong-interaction 
gauge symmetry cannot be correct, as a specific theory of strong 
interactions. We could of course reinterpret the theory just 
constructed as a theory of weak interactions, based on the "weak- 
isospin" symmetry apparent (d'Espagnat and Prentki, 1962; Salam, 
1962) in nuclear beta-decay. This interpretation too would founder 
on the prediction of massless gauge fields. Before returning to 
specific applications to the fundamental interactions we shall have 
to understand how to evade the prediction of massless gauge bosons 
while preserving the local gauge invariance of the Lagrangian. This 
is the subject of the next chapter. 

39 



40 C. QUIGG 

4. SPONTANEOUS SYMMETRY BREAKING' 

In this chapter, we distinguish among various types of symme- 
tries: Poincarg invariance vs. internal symmetries, continuous vs. 
discrete symmetries, and exact vs. approximate symmetries. m"9 
approximate symmetries, several different realizations are possible. 
The Lagrangian may have an imperfect (or explicitly broken) symme- 
try, or the Lagrangian may be symmetric but have a physical vacuum 
which does not respect the symmetry. In the latter case, the 
symmetry of the Lagrangian is said to be spontaneously broken. 

Our concern here will be the conditions under which a symmetry 
is spontaneously broken and the consequences of spontaneous symmetry 
breaking. We shall find that if a theory has an exact, continuous 
symmetry which is not a symmetry of the physical vacuum, one or more 
massless particles, known as Goldstone bisons, must occur. If the 
spontaneously-broken symmetry is a local gauge symmetry, a miracu- 
lous interplay between the would-be Goldstone boson and the normally 
massless gauge bosons endows the gauge tosons with mass. The Higqs 
mechanism, by which this interplay occurs, is central to the current 
understanding of the intermediate bosons of the weak interactions. 

A. The Idea of Spontaneously-broken Symmetries 

The physical world manifests a number of apparently exact 
conservation laws which we believe reflect the operation of exact 
symmetries of nature. These include the conservation of energy and 
momentum, of angular momentum, and of electric charge. Amonq the so- 
called internal symmetries not explicitly related to Poincarg 
invariance are many useful approximate symmetries, such as isospin 
invariance, conservation of strangeness and charm, N(3) invariance, 
etc. It is usual to treat these approximate symmetries by writing 
the Laqranqian as 

s?= 2 symmetric + 69 symmetry breaking . 

This form is particularly useful if 6.YsB is small, in some sense, 
compared to gS, so that the symmetry-breaking may be treated as a 
perturbation. A familiar example is 

Ep = pstronq + gFX 
7 A comprehensive review of the material in this chapter is given by 
Bernstein (1974). See also Abers and Lee (1974). Dynamical mecha- 
nisms for spontaneous symzetry breakinq were first discussed by 
Nambu and Jona-Lasinio (1961) and by Schwinqer (1962a, b). 
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in which the strong-interaction Lagrangian is isospin invariant and 
responsibility for isospin violations is ascribed to the electro- 
magnetic tern 9 EM' 

We saw by example in Chapter 2 how continuous symmetries of the 
Lagrangian lead to exact conservation laws. Approximate conser- 
vation laws may ariseifhe Lagrangian is imperfectly symmetric. It 
may also happen that the Lagrangian is exactly invariant under some 
symmetry # but the physical vacuum is not. This leads to exact 
conservation laws, but conceals the symmetry of the theory. 

To see how this second situation may come about, let us consider 
a Lagrangian for a real scalar field $I which take the general form 

41 

se = +capo)ca!+d - ~(4) 

HOW does the nature of the vacuum (and therefore of the particle 
spectrum) depend upon the effective potential V($)? Suppose that the 
potential is an even function of 0, 

V(b) = V(-$4 

Then the Lagrangian is invariant under the parity transformation 

To enumerate the possibilities, let us consider a potential of the 
form 

V($) = Q.12t12 + si1x1c$4 

The positive coefficient of the @4 term is chosen to ensure stability 
against large oscillations. 

Two cases may now be distinguished. Case 1: u2 > 0 , corres- 
ponds to "ordinary" symmetry. With this choice, V(Q) has a unique 
minimum at I$ = 0, as shown in Fig. lOa, which corresponds to the 
vacuum state. The particle content of the theory is best examined in 
the Hamiltonian formalism. It is straightforward to make the 
transcription; more so in a single space dimension. We write 
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a b 

Fig. 10: (a) Ordinary effective potential with a unique minimum at 
x = 0. (b) Potential with a degenerate vacuum, corresponding to the 
case of spontaneously broken symmetry. 

L = dx.P(x, t) 

and regard 4(x, t) as a canonical coordinate at each position x. It 
is convenient to divide space into cells of length E labelled by xi, 
with 

Then we define 

qi 5 @(Xi’ t) 

and identify the conjugate variable as 



GAUGE WORIES 

pi 2 dqi/dt 

In this notation, the Lagrangian becomes 

L + E ct + Pi2 
2 2 Ixlqi4 

- JL- tqi - qiml) - J$ qi2 - 4 
2C2 1 

, 

i 

and the Hamiltonian looks like 

H = E ~ Pi2 + -L (qi - qisll 
2 

2E2 

This discrete form shows field theory to be a very large collection 
of Schrodinger equations.* 
one for which qi = qi- 

The minimum energy configuration is the 

particle spectrum can h 
and V(q.) = 0 for all coordinates q.. 

e deduce2 
The 

by considering small oscillations 
around the vacuum qi = 0 (@ = 0), for which 

H = EC 4 {pi2 + !J2qi2 1 
i 

which 
hlass)2 

to the Hamiltonian of a free particle with 

Case 2: !.I~ < 0, is the situation referred to as spontaneously- 
broken symmetry. The potential 

v(e) = -+lu12$ 2 +J-$ , 

~ixwn in Fig. 10(b), has minima at 

@ = + 
/- 

- yy; E 2” 

which correspond to two degenerate lowest-energy states. 
choose either of these (say, C$ = v) to be the vacuum. 

we may 

transformation 
The parity 

43 

'This formulation is developed at some length by Bjorken (1979). 
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is then a symmetry of the Lagrangian, but not of the vacuum state. 

Define a shifted field 

so that the vacuum corresponds to I)' = 0. In terms of the shifted 
field the effective potential is 

-u2 [ $12 +$$P 3 +- 1 14 

2 

V(c$') = 4v2 e +-k!-- 41x1 1 ’ 

and the Hamiltonian appropriate to small oscillations is 

H = E + pi2 - 

This 2form 2represents the oscillations of states with 
(mass) = -2)J > 0, which do not manifest the sywwtry of the origi- 
nal Lagrangian in any way. 

This simple example has illustrated two important points. 
First, spontaneous symmetry breaking occurs when an exact symmetry 
of the Lagrangian is not respected by the vacuum. Second, span- 
taneous symmetry breaking is totally different in character from 
explicit symmetry breaking, in which the Lagrangian itself does not 
respect the symmetry. 

B. Spontaneous Breaking of Continuous Symmetries 

To make the leap to spontaneous breaking of continuous symme- 
tries, let us consider the simple case of a Lagrangian for two scalar 
fields +l and I$~: 

9 = k C (a%,) cape,) + (a%,) cap+,) 1 - vk$12 + c22) , 
which is invariant under [U(l) or O(2)] rotations 

(;ij = (-;Y;: ::;I) (1:) - 
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As we have done before, we consider the effective potential 

2 
v(+2) = 5 $2 + y 2 N2) 

where r$ 2- 2 
= $1 + g* and distinguish two cases. 

case 1: u2 > 0 (ordinary symmetry). The vacuum occurs at 
and for small oscillations the Lagrangian takes the 

Lx? S.O. = 4 C ca%i) ca,41) - ii2+12 1 r: + 4 (a%,) cap@,) - ~‘4,” . 1 
We recognize this 'ately as the Lagrangian for two scalar 
particles of (mass) Py," 

, which is to say a degenerate multiplet 
(doublet), in accord with our simplest expectations. 

case 2: li2 < 0 (spontaneously broken symmetry). In this case, 
the absolute minimum of V occurs for 

4l 
2 

+ $2 
2 

= -p2/IXI t v2 , 

which corresponds to a continuum of distinct vacuum states with 
identical energy. The degeneracy is a consequence of the O(2) 
symmetry of the potential. Let us choose as the physical vacuum 
state the configuration 

(This can always be achieved by a suitable choice of coordinates.) 
Expanding about the vacuum configuration by defining 

hi ~ n = Ol- V , 

Q;. 
5 5 = $12-o , 

45 

we obtain the Lagrangian for small oscillations 
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1 
gso = 2 C 

(aFin) cap + (a%) tap 1 +& 
+ P2Q2 t 0.52 t . . . 

There are two particles in the spectrum. Th? q-parhicle, which 
corresponds to radial oscillations, has (mass) = -2~ > 0, while 
the <-particle, which corresponds to angular oscillations, is mass- 
less. The masslessness of 5 is a consequence of the O(2)-invariance 
of the Lagrangian, which means that there is no restoring force 
against angular oscillations. I" contrast, the mass of the o- 
particle is a consequence of trying to displace the r? against the 
restoring force of the potential. 

This splitting of the spectrum is an example of Goldstone's 
Theorem (Goldstone, 1961; Goldstone, et al., 1962; Gilbert, 1964), 
according to which if a theory has an exact continuous symmetry of 
the Lagrangian which is not a symmetry of the vacuum, a massless 
particle must occur (see Problem 7). 

C. The Higgs Mechanism 

We next consider Lagrangians with spontaneously broken sym- 
metries which also possess local gauge invariance. There will emerge 
a miraculous interplay between the massless gauge fields (such as 
made the Yang-Mills theory an unacceptable description of nucleons) 
and the massless scalar Goldstone particles (which are also uncommon 
in particle physics). The simplest example' of the Higgs phenomenon 
is provided by the Abelia" Higgs model, a U(l)-invariant scalar field 
theory with an Abelian gauge field that describes the electrody- 
namics of charged scalars (Higgs, 1964a. 1967). The Lagrangian is 

2 = $ caQ*(a$$) - $ $*$ 

_ + (4*,$j2 _ + Fp”F 
W 

I 

where 

, gu = a, - iqA!J 
F = 

!JV 
'See the interesting review article by Linde (1979). Compare Problem 
8. 
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and 

41 

The Lagrangian is invariant under U(1) transformations 

and under the local gauge transformations 

Q(X) -f @l’(X) = .iqa(x) $(X) 
. 

A,,(x) + A;(x) = AFiN + al-ldx) . 

AS usual, we have two cases, depending upon the parameters of the 
potential. 

case 1: u 2 > 0 (ordinary symmetry) leads to ordinary QED of 
charged scalars, with 

1 massless photon 

2 2 scalars (4') with (mass) = p2 

Case 2: p2 < 0 (spontaneously broken symmetry) requires a 
closer analysis. We must shift the fields to rewrite 2 in terms of 
displacements from the physical vacuum at I$1 = V. Let 

b = eiyv(v + n) 

Then the Lagrangian appropriate for the study of small oscillations 
is 
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9SO = +(a%) cap + 4(a% (ap - ~~~~~~~ 

+ p2q2 + 0. c2 

_ qvAp(au<) + + A’$ + . . . 

The n field has a (mass) 2 = -2p2 > 0 , as expected. 
A appears to have acquired a mass, 

The gauge field 
but is mixed up in the penulti- 

&te term with the seemingly massless c-field. 

To see what is really going on, it is convenient to write the 
(5, Ap) pieces as 

gy 
2 u 

I 

a form which pleads for a gauge transformation corresponding to 

Q -f $1 = e-iS(x)/ve(x) = “+rl 

Knowing that 2 is locally gauge invariant, we may return to the 
definition to compute 

2 
S.O. = & - + FLIVFPV. 

The particle spectrum is now manifest: 

. an q-field with (mass) 2 = -2p2 > 0; 

. a massive vector field A', with (mass) 2 
v 

= qv > 0; 

l no c-field. 

Tnanks to our choice of gauge, 
entirely! 

the c-particle has disappeared 
Where did it go? The gauge transformation 
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shows that what formerly was the C-field is reponsible for the 
longitudinal components of the A' field. Before spontaneous symme- 
try breaking we had lJ 

2 scalars ($1 

+ 2 helicity states of A - 1-I 
4 particle states 

After spontaneous syrrmetry breaking, we are left with 

1 scalar (17) 

+ 3 helicity states of A' - 11 
4 particle states 

It is commonly said that the massless photon "ate" the massless 
Goldstone boson to become a massive vector boson. The remaining 
massive scalar (II) is known a* the Higgs boson. The gauge in which 
this became transparent is known as the unitary gauge (U-gauge), 
because only physical fields appear in the Lagrangian. 

D. Spontaneous Breakdown of a Non-Abelian Gauge Symmetry 

To approach the additional complications that attend the spon- 
taneous breakdown of a non-Abelian gauge symmetry we choose as a 
useful prototype an SU(2) gauge theory and study scalar fields that 
make up the triplet representation: 

$1 

&= i ) 42 

43 

We shall construct a theory which is invariant under the gauge 
tran*forI;ation 
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LtL '2 = ew Ii;* 512 

The exponential factor is a 3 x 3 matrix. 
isospin rotations about the i-axis, 

The operator Ti generates 

algebra 
and satisfies the usual SU(2) 

[Ti, Tjl = iEijkTk . 

It has the explicit form 

Tt = 
Ik -lEijk 

As usual the covariant derivative takes the form 

52 
u 

= Ia 
P 

- igT,* A 
-v 

= $&, - SEemAE 

and the Lagrangian is 

9 = %K@“$* _ Pa ,$I - v$** 2’ - WV” l gy” . 

When $ = 0 is a minimum of the effective potentialv, we have an 
ordinary, ysospin conserving, 
theory. 

gauge-invariant Yang-Mills field 
Of more interest to us at the moment is the spontaneo@y 

broken case, in which we choose the value ofi that minimizes ~(0. @) 
a* "A.1 

0 
$= 0 ( ) v 

We shift the fields and expand about the minimum configuration: 

$ 61Tl + 62T2) 
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As in the Abelian Riggs model, we make use of gauge invariance and 
transform to U-gauge, by letting 

51 

0 + A' = exp - ; KITl + S2T2) .& 
> 

In the new gauge, the Lagrangian for small oscillations is 

A1A1' 
lJ 

t A2A2u 
P 1 + . . . 

In this form the Lagrangian reveals that 

l 5 and < have disappeared entirely, i.e. they have been 
"gaiged awa;;~ 

. n has become a massive Higgs scalar with (mass) 2 = -2p2 > 0; 

l the vector bosons corresponding2to tQe2 (broken symmetry) 
generators Tl and T2 acquire (mass) = -g p /A > 0: 

l the Lagrangian (and the vacuum) femain 
and the corresponding gauge boson A 

invariant under T3, 

lJ 
remains massless. 

Again let us summarize what has happened to the theory. In the 
case of ordinary symmetry, we had 

3 massive scalars [(mass) 2 = lJ21 

3 massless vector gauge bosons 
_ (x2 helicity states) 

9 degrees of freedom 

After spontaneous symmetry breaking, the particle spectrum consists 
of 
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1 Higgs scalar f(mass) 2 = -2p2 > 0 I 

1 massless gauge boson (x2 helicity states) 

2 nwA.ve gauge bosons (x3 helicity states) 

9 degrees of freedom 

In the absence of the x gauge symmetry, spontaneous symmetry 
breaking would have led to one massive scalar plus two Goldstone 
bosons. 
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5. THE WEINBERG-SALAM MODEL FOR LEPMNS 

53 

The examples of the preceding chapter have shown how spontane- 
ous symmetry breaking can endow the gauge bosons with mass. This 
suggests a means for constructing a theory of the weak interactions 
which is based upon local gauge invariance. As usual, the choice of 
a gauge group is inspired by experiment but there is no guarantee 
that the theory will have acceptable consequences. In this instance, 
the first and in many ways simplest gauge theory of the weak and 
electromagnetic interactions, the Weinberg (1967)-Salam (1968) 
theory, gives an apparently successful account of all known data. It 
is this theory that we now construct.' 

A. Structure of the Theory 

Me first consider only the electron and its neutrino, which form 
a left-handed "weak-isospin" doublet 

where 

v)L = 4(1 - Y5)V 

and 

eL = 40 - Y5)e 

Since the neutrino is apparently massless, 

% = 4(1 + Y5)V = 0 , 

'For more extensive accounts, see Abers and Lee (1973), BGg and 
Sirlin (1974), Fradkin and Tyutin (1974), Taylor (1976). Some 
history of gauge models of the weak and electromagnetic interactions 
is reviewed by Coleman (1979), Hung and Quigg (19801, Glashow (1980), 
Salam (1980), and Weinberg (1980). Many technical issues are treated 
in the 1975 Les Houches Lecture Notes (Balisn and Zinn-Justin, 1976). 
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so we designate only one right-handed singlet, 

R 5 eR = k(1+Y5)e 

C. QUIGG 

This completes a description of the weak charged currents. To 
incorporate electromagnetism, we define a "weak hypercharge" Y. 
Requiring that the Gell-Mann-Nishijima relation 

Q = I3 + fY 

be satisfied leads to the assignments 

YL = -1 , 

YR = -2 

By construction, the weak isospin projection I3 and the weak hyper- 
charge Y are commuting observable*, 

[13’ Y]= 0 

We now take the group of transformations generated by I and Y to 
be the gauge group SU(2) 8 U(1) of our theory. To construct the 
theory, we introduce gauge bosons 

A;, A2, A3 for SU(2) 
u v 

B for 
lJ 

U(1) 

The Lagrangian is written as 

LZ'JZ +=9 
g=KJe leptons , 

where 

zgauge = -%F~~F~~" - %fPVfpv , 
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the field-strength tensors are 

F1 
W 

= a,A; - $A: + gcijkA$; 

and 

f 
!JV 

= a, By - a B 
UV 

and 

9? leptons 
= Riy" ap - q B,,Y 

+ Liyp ap - y B,,Y - 2 L,' A,, L . 

The coupling constant for the U(1) gauge symmetry is chosen as g'/2, 
the factor of 4 being chosen to simplify later expressions, and the 
coupling constant for the N(2) gauge group is called g. 

This is not a satisfactory thfory:! fo5two reasons. It contains 
four massless weak gauge bosons (A , A , A , B"), whereas nature has 
only one, the photon. In addition, the local SU(2) invariance 
forbids an electron mass term. How can the theory beLmodified so 
there will he only one conserved quantity (the electric charge), and 
one massless gauge hoson (the photon) , and the electron will acquire 
a mass? 

To accomplish these things, we introduce a complex doublet of 
(Higgs) scalars 

which transforms like an SU(2) doublet and must therefore have 

We add to the Lagrangian a piece 

55 

gHiggs = m%,+r~p - v(g+$l) 
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where as usual 

we+@) = 4 0+@ + y- (@+w2 

We are also free to add an interaction term which involves Yukawa 
coupling* of the scalars to the fermions, 

9 inter = - Ge&$+L + i;@l , 

which is symmetric under SU(2)L@ U(1) and has an admissible Lorentz 
structure. 

NOW let us imagine that 3 < 0 and consider the consequences of 
spontaneous symmetry breaking. We choose 

<t$> = I 
0 

which breaks both SU(2)L and U(1) 
r: 

but preserves an invariance under 
the U(1) 

9 
symmetry generated y the electric charge operator. 

Recall thn a (would-be) Goldstone boson is associated with every 
generator of the gauge group that does not leave the vacuum invari- 
ant. The vacuum is left invariant by a generator Ce if 

iu 3 e <cpo = w, 

For an infinitesimal transformation, the left-hand side is 

(1 + ia%) <$> 0 

Thus the condition for '8 to leave the vacuum invariant is 

For the generators of W(2) 63 U(l), we find 
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TIWo = (1 l)( 1) = (i) #O ' 

T2<@>o=(p -;)(I) =(-;) #O , 

T3<@'o = ( 1 -1 ) ( : ) = ( -“, ) # O ’ 
0 

Y<lp>o = + 1. i ) # 0 , 
V 

but 

Q<@' Cl 
= G(T3 t Y)<$>o = 0 

This is promising! Three of the original four generators are broken, 
but the linear combination corresponding to electric charge is not. 
The photon will therefore remain massless,. 

Next, we expand the Lagrangian about the minimum of V by writing 

$ = exp{ -y.) ( " ", n ) , 

and transforming at once to U-gauge: 

Q-+4’ = exp(G), = (,:,j 

T.A' r*+.l + Y y 

R+R 

L+L' = exp 
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[Had we followed the usual procedure literally, we would have 
replaced 
K = +(T. 

the generator ~~ in the shifted field $ by the combination 
- Y) orthogonal to Q, which is strictly speaking the third 

broken Generator. However, 
invariant, the effect is 

since 3 = K + Q and Q leaves the vacuum 
the same.] 

C. QUIGG 

We now may enumerate the consequences of spontaneous symmetry 
breaking. The Yukawa term in the Lagrangian becomes 

Sinter = - Gev IeReL t eLeRl + . . . 

= - Gevee t . . . 

so the electron has acquired a mass 

m e = Gev 

The Higgs tern in the Lagrangian is 

9%. 
Ww* 

= +(a%) ca ri) 
IJ 

- u2n2 

2 2 
t% @'BP - g+ + g2 C (A;J2 + (A ) ; 2 II t... . 

We see at once that the V-field has acquired a (mass) 2 = -2p2 > 0; it 
is the physical Higgs boson. If we define 

22. the term proportional to g v 1s recognizable as a mass term for the 
charged vector bosons: 

q [Iw;l’ + I”;1 ‘1 

Thus the masses of the charged intermediate bosons are 
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Finally, defining the orthogonal combinations 

and 

we find that the neutral intermediate boson Z" has acquired a mass 

and that the A field remains a massless gauge boson corresponding to 
the surviving'exp {iQe(x) } symmetry. We have achieved, at least 
schematically, the desired particle content--plus a massive Higgs 
scalar we didn't request. 

Do the interactions also correspond to those in nature? The 
interactions among the W-bosons and leptons are of the form 

L?? W-9, = 2 [ yeLW; + +JvLw;] , 

which is consistent with the familiar low-energy phenomenology pro- 
vided we identify 

GF - J.f- = 1/2"2 
?5- - 8Mw2 

59 

Similarly, the neutral-boson couplings to leptons are given by 
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- * 
go-g, = J2 A ey’e 

cl +g 92 1-1 

- 5 ~zpqp, 
+ & ( (q2 ;g12)G-Lyy, - gJFRypeR) . 

Therefore we may indeed identify A 
!J 

as the photon, provided that we 
set 

It is convenient to introduce a weak mixing angle uw and to 
parametrize 

g' = g tan EW , 

so that 

4 = e/sin ok7 'e 

g' = e/co* 61,1 > e 

r 

and 

fs-7 = g,cosew . 

With these definitions, the connections between the SU(2)L '8 U(l) 
gauge fields and the electroweak gauge fields are 

B = 
!J AP cos sw + z lJ 

sin Bw 

= Au sin "I? - Z,, cos Bw 
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zP = Bu sin ew - A; co* ew 

A = 
v 

Bu cos ew + A3 sin 
!J 

e W 

justifying the designation of 0 
% 

as a weak mixing angle. Taken 
together, the coupling constant 1 ratifications lead to 

M,!j = g2/4fiGF = e2/4v'?!GFsin2 Bw 

= ricx/fiGFsin2 ew 

2 
= (37.4 GeV/c2) /sin2 0W 

and 

M; = M$cos2 ew 

Notice that the dimensionless Yukawa coupling that endowed the 
electron with a mass is small: 

Ge = 23'4, VE- '- 3 x 10-6 e F 

as well as arbitrary. The leptonic weak interactions are summarized 
by the Feynman rules for vertices given in Figure 11 (Fujikawa, et 
al., 1972). 

B. Properties of the Gauge Bosons2 

Within the Weinberg-Salam theory, there are definite predic- 
tions for the intermediate boson masses in terms of 9 which may in 
principle be fixed in neutral current measurements. W'r%t can be said 
about the decays of the intermqdiate bosons? 
studying the leptonic decays of W-. 

Let us begin by 

In the W- rest frame, the outgoing lepton momenta are 

61 

'A convenient summary appears in Quigg (1977). See Bung and Quigg 
(1980) for the evolution of the intermediate boson idea. 
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e 

-ie Gy e 
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-i 
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>- 
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Fyi ‘l-y5 Iv ; 

! 

,z;: -j$ (G$)i3 [cv+cAy] e, 1 

cv =4 sin’ Bw -I, 

CA = I 

Fig. 11: Feynman rules for gauge boson interactions with leptons 
in the Weinberg-Salam model. 
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P = !$ (sin 8, 0, cos 8, 1) 

q = % (-sin 6 0 I , --cos 8, 1) , 

where the electron mass has been neglected, and the polarization of 
the decaying W- is E 

P 
E '2 0). The matrix element for the decay is 

2 

i 1 
4 

i.M = L(e, p)yY(l - y5)v(v, q)c l 

!J 3 ’ 

so that 

lW2 = +$ tr ( @!(I - Y5)d(l + Y,)B@ } 

GF4 = 7 92tr 
{ 

(1 + Y,m@*~ 
1 

GE& = -- . 8 
r'2 { 

(E - 9) F* ' P) - (E l E*) (P * q) 

* * 
+ (E- p) (E .q) + ic Kk~VcKqXE!AP” > 

The decay rate cannot depend upon E, so we first choose 

E = (0, 0, 1, 0) = E* 

for which 

IAl2 = $ sin2 f? 

The differential decay rate is 

63 

ar 
dQ = 

WI2 = GF” sin2 0 , 
6 4 lT2Mlf 1671~47 
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and the partial decay rate 

r (w- + e-v) = s dS? a dCl =Gz 

:: 23 MeV 

sin3 0 W 

For2the value of the weak angle curren%ly favored by experiments,' 
sin ew = 0.2, we predict MW = 84 GeV/c and r(W -f ev) = 250 MeV. 

It is similarly straightforward to compute the decay angular 
distributions of intermediate bosons with transverse polarizations. 
The results are summarized in the Tabie: 

helicity ar/as2 

1 
32n'fi 

(1 - cos ej2 

0 

-1 

These angular dependences are easily understood in terms of angular 
momentum conservation: 

3Recent summries, with extensive 
include Abbott and Barnett (1978) 

references to earlier work, 
, Hung and Sakurai (1979); and Kim, 

et al. (1980). 
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e- V 

W- 0 

1 - 
77 v 

Fig. 12. 

0 = 0 is forbidden, but 0 = II is OK. 
w+: 

The situation is reversed for 

t e+ fi 

Fig. 13. 

8 = 0 is allowed, but e = TT is not. 
direction of the W+ polarization, 

The positron tends to follow the 
while the electron avoids the 

direction of the W- polarization. This is an example of C-violation 
in the weak interactions. 

The leptonic decay rates of the neutral intermediate boson can 
be computed almost by transcription. We find 
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11.4 MeV 

sin3 ew cos3 Bw 

rd + ee, = r(z” + vu, x 
C 

(2sin2 

Thus, for sin2 e 
Mev, and T(z" -t $ 

= 0.2 we expect MZ = 
t: 90 MeV. 

ewj2 + (1 - 2sin' owl2 1 . 
94 GeV/c2, r(zo -t VT) = 180 

Extension of these calculations to other leptons and to non- 
leptonic decays can be made effortlessly after we have incorporated 
quarks and other lepton generations into the theory. The results are 
described in many places, and we merely refer to them. 

C. Neutral Current Interactions 

As a prelude to a very brief review of neutral current inter- 
actions, let us incorporate additional leptons into the Weinberg- 
Salam model. This is done merely by cloning the existing structure. 
We add further weak isospin doublets 

iv:: ), ( “: ), **- 
and sight-handed singlets 

uR T R . . . 

with the same weak hypercharge assignments as 

[By omitting right-handed neutrinos, we are continuing to regard the 
neutrinos as massless.] In addition, we include Yukawa interactio;? 
terms 

9inter = -Gi 
C 

Ri@+Li + +R, 
I 

, 
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with i = e, u, T... This done, we obtain the psme Feygman rules for 
the interactions of u, v , T, ", . . . withy, 
e and VeR and obtain ma & 

W, and 2 as we did for 

the electron. 
term2 for the charged leptons just as for 

The leptonic neutral current interactions for which experiments 
may be contemplated are measurements of the cross sections for the 
neutrino-scattering reactions shown in Fig. 14 (see Problem 91, 

9 e 

up e-up e 

F-c 
Z” 

?iP 
e 

Tue P -?7 e 

ue e-e u e 

Fl e 

>---( 
Z” 

% 
e 
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Fe e- ge 

Ve e 

1 

W 

e 

Z0 

Fig. 14. Neutrino-electron scattering reactions in the Weinberg- 
Salam model. 

t$ggether+with the observation of y- z o interference in the reaction 
ee +uu illustrated in Fig. 15. The cross sections for neutrino- 
electron scattering ('t Hooft, 1971) are shown in Figure 16 as 
functions of the weak mixing angle.' Existing measurements are all 
consistent with the value 

sin2 e 
W 

= 0.23 + 0.05 , 

which is in agreement with what is known from semileptonic processes. 

F p+ 

1 
Y 

e- e+ 

Fig. 15. Contributions to the reaction e+e- -t v+p- in the weinberg- 
Salam model. 

'Details of the computations may be found in the lecture notes by 
Quigg (1976) and the monograph by Taylor (1976). 



GAUGE THEORIES 

N 
E 
0 h 

L4Jh 

; 
: - 

b” 

5 

2 

-41 
IO 

5 

i 

-42 
IO 

F I I I I 1 

0.2 0.4 0.6 0.8 1.0 

sin2 8, 

Fig. 16. Cross sections for neutrino-electron scattering in the 
Weinberg-Salam model. 

D. Incorporating Hadrons 

Extension of the Fleinberg-Salam rode1 to the hadronic sector is 
accomplished through the medium of the quark model. The necessity of 
enlarging the spectrum of quarks beyond u, d, and s has already been 
noted in Chapter 1, where the motivation for the Glashow-Iliopoulos- 
Maiani (1970) mechanism was reviewed. Rather than repeat here the 
arithmetic presented there, we shall simply read off from the 

69 
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/ 
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structure of the Weinberg-Salam model of leptons the Feynman rules 
for the G-I-M scheme based on 

with 

and 

( :e)L ( :e)L uR dR cR ‘R ’ 

de = d ~0s BC + s Sin BC 

se = 
s co* ec - d sin eC 

This construction yields the observed universality between leptonic 
and hadronic charged-current interactions, results in flavor-conser- 
ving neutral currents, and has an agreeable symmetry with the lepton 
Sector based upon 

(y, iv:: ), eR l-IR 
The Feynman rules for interactions between gauge bosons and quarks 
are presented in Figure 17. 

The flavor-conserving neutral current property is easily 
generalized to the case of many quark generations. This is of more 
than academic interest because of the observation of the fifth quark 
(b-quark) in the T family of meson resonances, not to mention the 
existence of the charged lepton ~(1782). Suppose that there are n 
left-handed quark doublets 

(i),. ( Iv), ( il ), *-- 
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l-- %t q i eq “Yx q 

iiyxl- y5 ‘do 

cV 
=T 3 -4eq sin’ Ow 

CA Z-T 
3 

Fig. 17: Feynman rules for gauge boson interactions with quarks in 
the Weinberg-Salam model. 

where the primes represent mixing among the charge-l/3 quarks. We 
write all of the quarks in terms of a composite (2n-component) spinor 
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and express the charged current as 

(+I 
3 J- FQ(l - Y,)"Y 

where the (2n x 2n) matrix 6 is of the form 

and U is the unitary, (n x n) matrix that describes quark mixing. 
The weak isospin contribution to the neutral current is 

J(3) 
h 

.J- F$(l - y,,IS, @+tlY # 

but since 

[6, 6.5 = (,’ -1) , 

the neutral current will be flavor diagonal. 

As was the case for the leptons, fermion mass generation by the 
Higgs mechanism is both possible (which is a virtue) and completely 
ad hoc (which is not). Let us show this explicitly for the two- 
generation case. We assign 
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as slJ(2)L doublets with weak hypercharge YL = l/3, and 

"R' dR' =R' =R 

as su(2)L singlets with Y(u, c) = 4/3, Y(d, s) = -2/3. The Higgs 
doublet 

4 = 

transforns as zn S3(2) doublet i:ith Y = 1, while the charge- 
conjugate dcublet 

is an W(2) doublet with Y = -1. The most general gauge-invariant 
Higgs boson-fermion interaction is 

9inter = 
Gl[il&lR + h-c.1 + G2$@dR + h.c.1 

tG3(+sR t h-c.1 + G4[L2CR + h.c.1 

tG5[L2@dR t h.c.1 + Gs[:2@sR + h.c.1 . 

The other conceivable terms, i & 
-- 

Replacing Q by its vacuum expec i? at& value 
and L24uRr vanish identically. 

we obtain mass terms. The Yukawa couplings G1...G6 must be chosen so 
that u, d, s, c are mass eiqenstates with the correct masses: 
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Gl = mu/v 

G3 = ms sin et/v 

G5 = -G2 tan ec 

C. QUIGG 

G2 = md cos et/v , 

G4 = mJv I 

G6 
= G3 cot EIc 

We are evidently at liberty to do this. Clearly any symmetry 
principle which relates the G. may lead to connections between the 
quark masses and the Cabibbo {inixing) angle. 

E. The Higgs Boson 

With the Gi adjusted to reproduce the fermion mass spectrum, we 
may read off the Feynman rule for Higgs boson-fermion interactions: 

f 

> 

H 
-im ----em -=- 

V 

f 

im (GFQ) 

Fig. 18. 

The amplitude for Miqgs decay into a fermion-antifermion pair is then 
simply 

idtf = -im(G fi)%(p F )v(p ) 1 2 

where (neglecting the fermion masses) 

P7e then have 

p1 = 4MH(0, 0, 1, 1) 

p2 = 4MH(0, 0, -1, 1) 

, 
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IL4 2 = GFm2fi tr($,#,) 

4G m2M2 
=2.$ 

which implies an isotropic decay angular distribution 

dr = && = GFm:b+I 
dS2 64r2MH 16n2n 

, 

and a total decay rate 

T(H"fi) = GF&l 
-TiE=- . 

The dominant decay of a light (NH < 2 %7 ) Higgs boson is therefore 
into pairs of the most massive fermlon which is 
accessible.' 

kinerratically 

Nothing in the Weinberg-Salam theory specifies the mass of the 
Hiqgs boson, and nothing we have done depends in any direct way upon 
the value of this parameter. However the couplings of the Higgs 
scalar to gauge bosons are determined by the Higqs mass, as in the 
case of 

HY lH . 
1%: 

/ -A GF”,Z -= 
/ . 

H” .\ 
4 2JT 

H 

Fig. 19. 

'The properties of a light Higqs boson are elaborated by Ellis, et 
al. (1976), and by Gaillard (1978). 
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Because of this, the overall consistency of the theory may imply some 
restrictions upon the Higgs rna~s.~ The manner in which this canes 
about may be seen most simply by examining the behavior of the theory 
at high energies (Lee, et al., 1977a, b; Dicus and Mathur, 1973). 

TO begin, let us recall the familiar unitarity argument for the 
breakdown of the four-fermion theory. In the V-A theory with no 
intermediate bisons, the cross section for the reaction V,,e + !.lVe is 
given by 

G;s Cm2 
a(vL,e -f ).lv,J = - 

- m;) 
2 

ll l- s 1 
G;s z- ‘II 

The angular distribution is isotropic, 

(m2 
2 

'- S 1 
which is to say that the scattering is purely s-wave. 

Partial-wave unitarity constrains the modulus of the s-wave 
amplitude to be 

where the partial-wave expansion is 

4 
(2J + l)PJ(cos 0)&J 

J=O 

6A lower bound on MH is derived by requiring that radiative correc- 
tions be controlled: Linde (1976); Weinberg (1976). An alternative 
approach to the heavy Higgs alternative has been pioneered by Veltman 
(1977a. b, 1980). Upper bounds on fermion masses are also implied. 
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and the explicit factor of two is to undo the spin average. This 
constraint is equivalent to the familiar restriction 

77 

for s-wave scattering. For this process, 

which implies the unitarity constraint 

GFs ----Cl n/7 

This means that the four-fermion theory can make sense only if 

s < llJT/G, I 

which is to say that 

6 < 617 GeV 

'CM < 309 GeV/c 

In gauge theories, the asymptotic growth of partial-wave ampli- 
tudes is regulated, and all amplitudes are at worst in logarithmic 
violation of partial-wave unitarity in lowest order. When the 
calculable higher-order corrections are applied, the amplitudes 
become properly finite. There is one possibly exceptional case: 
interactions in which the Higgs boson plays an important role. In 
gauge boson-gayge boson scattering, high-energy amplitudes are pro- 
portional to MH. For example, 
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1 GF4 
.M~(HH+ HH) w - -- 

s-+-J 4 lItI 

For a" elastic s-wave amplitude, the partial-wave unitarity restric- 
tion is 

, 

which is respected by the lowest-order amplitude only if 

4 < Y z (1.75 Te"/c212 . 

A systematic analysis of all channels (W+W-, Z"Zo, HZ", HH) leads to 
a refined "bound," 

4 < !gz (1 T~V,'C~)~ 

The meaning of this condition is that if MS << 1 TeV/c2, the weak 
interactions remain weak at all energies (except "ear gauge boson 
masses) in 2 the Se"Se that tree diagrams are reliable; if 
MH > 1 TeV/c , partial-wave amplitudes for gauge boson scattering 
becoine large (i.e. weak interactions become strong). I" the latter 
case, gauge boson interactions in the TeV regime may resemble 
hadronic interactions in the GeV regime. 

F. Open Questions 

In spite of (or because of) the spectacular phenomenological 
success of the Weinberg-Salam model, many questions present them- 
selves. We close this chapter with a brief list. 

l Is the Weinberg-Salam theory correct? Is it complete? 

l Will the intermediate bosons be found with the expected 
properties? 

l Will a Higgs boson be found? What are its properties? 

l Are weak and electromagnetic interactions truly described by 
a gauge theory, or do we merely have the low-energy phenomenology 
characteristic of the Weinberg-Salam theory? 
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. What is the origin of fermion masses? 

. What is the origin of generations? 

. How does the mixing of quark flavors arise? 

. What is the mechanism of CP violation? 

. Are the neutrinos massless? 

. What (if any) is the pattern of lepton mixing, and how does it 
arise? 

79 
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6. QUANTUM CHROMODYNAMICS' 

Having learned that local gauge invariance provides the key to 
understanding the weak and electromagnetic interactions, we turn OUT 
attention once again to the strong interactions. The work of Yang 
and Mills and of many others in the early 1960s showed that it is 
unlikely that a flavor symmetry (like isospin or SU(3)) will be the 
basis of a successful gauge theory. Furthermore, at what we cur- 
rently perceive to be the constituent level of quarks and leptons, 
flavor has been see" to be an attribute of the weak interactions-- 
rather than the strong. The property that distinguishes quarks from 
leptons is color, so it is natural to attempt to construct a theory 
based upon local color gauge symmetry. 

The choice of a gauge group is guided by two empirical facts: 

l the familiar quarks (u, d, s, c, b) are color triplets, but 

. the known hadrons are color singlets. 

An obvious candidate for the color gauge group is SU(3).C, where the 
subscript C for color is to differentiate this symmetry Tram the 
approximate flavor SU(3) symmetry of the ordinary hadrons. This will 
be seen to be a felicitous choice. 

The gauge bosons that will emerqe in the theory are called _-_- 
glu0ns, because of their 
hadrons. The couplings 

role in binding quarks together within 

Fig. 20. 

7A recent review has been given by b!arciano and Pagels (1978). 
Various threads in the QCD tapestry are to be found in the papers by 
Bardeen, et al. (1973). Fritzsch, et al. (1973), Gross and Wilczek 
(1973b), and Weinberg (1973). See also the workshop proceedings 
edited by Frazer and Henyey (1979) and by Mahantappa and Randa 
(1980). 
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can exist for gluons that belong to the 

81 

representations of SUO)c. Color-singlet gluons would also couple 
to 

Zic. 21. 

and would give rise to long-range forces between hadrons--the rock on 
which fhe Yang-Mills theory foundered--so we choose to exclude them 
from tile theory. 

If the quark colors are designated as red (R), blue (B), and 
green (Gf r the gluons may be represented conveniently as 

FE3 RG BR El? BG GB 

&7 - ?jB -ji + & _ 2zG 
---E- 6 

The last two are color-preserving forms which are orthogonal to the 
color-singlet combination 

The elementary interactions will be of the form 

Red quark + 6.B gluon + Blue quark , 
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etc. 

A. Stability of Color Sinqlets 

We wish to verify, or at least make it plausible, that the 
colorless (singlet) state is the configuration of lowest energy. 
This would account for the common occurrence of color singlet 
hadrons. To give a complete demonstration, it would be necessary to 
give a complete solution to the problem of hadron structure. Since 
this is beyond our means, we must be satisfied to examine the 
relative strengths of one-gluon-exchange interactions among quarks 
(Feynman, 1977). This style of investigation is referred to as a 
"maximally attractive channel" (MAC) analysis. 

Consider first the scattering of two green quarks. This is 
mediated by- a single diagram, namely by the 
(i?R + BB - 2GG)/6 gluon: 

Fig. 22. 

The interaction strength is proportional to 

(s) x (2) = +t 

which is repulsive. As in electrostatics, like 
repel. 

exchange of a 

, 

(color) charges 

The scattering of a blue quark and a green quark involves two 
interactions: a direct term 
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Fig. 23. 

with strength 

and an exchange term 

G 

B 
Fig. 24. 

with strength 

1x1 = 1 

which yields a total interaction strength of 

which is again repulsive. 
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States symmetric and antisymmetric under color interchange may 
be classified as 

What are the interaction energies in this basis? The direct term 
contributes (S + A)(-l/3), while the exchange term contributes 
(S - A) (1). Thus a symmetric configuration corresponds to an inter- 
action strength 

es = 1 - l/3 = 2,'3 

consistent with our result for GG scattering, and an antisymmetric 
combination corresponds to 

8A = -1 - l/3 = - 4/3 

These results are SU(3)C-invariant; they continue to hold under 
changes of labels R, B, and G. 

To build up baryons, we sum over two-body quark-quark inter- 
actions. There are three possible three-quark configurations in 
color space. 

l The totally symmetric color 2 ([f77) configuration, with 
interaction strength 

8 10 = 3Edirect ' 3ES(exchange) = 3 * 'S = + 2 ' 

which is repulsive. 

l The totally antisymmetric color singlet 
with interaction strength 

configuration, 

&l = 3edirect ' 3EA(exchange) = 3o 'A = - 4 ' 

which is attractive. 
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- The color 8 
action strength 

state of mixed symmetry, with inter- 

&8 = 38 direct + 'S(exchange) + &A(exchange) 

= 3(- l/3) t 1 - 1 = -1 I 

which is less attractive. 

Of the three-quark states,, it is the color-singlet configuration 
which is maximally attractive. 

For a general configuration of n quarks with ns symmetric and 
nA antisymmetric pairs, we readily ve ?J, 1fy that 

8 = (n, - n,) - ?j “q 
( ) 2 

With this result in hand, it is easy to investigate the interaction 
energy of more complicated configurations. Should a quark be bound 
to a (color singlet) proton? The proton-quark composite has a total 
energy 

(47 = (l-3)-$ 
4 

8 ( 1 = -4 I 
2 

which is the same as the energy of a quark and proton in isolation: 

E (a 
+ g(a) = -4to = -4 . 

Thus there is no indication of appreciable binding. A similar 
examination of 5, 6,... -quark states reveals no energetic advantage 
to these configurations either. Thus, within the context of the one- 
gluon-exchange description, we have made it plausible that color 
singlet three-quark states are the most deeply bound multiquark 
states. 

Let us now turn our attention to quark-antiquark states. As an 
example of a colored meson , consider a (color 8) RG state, for which 
the direct interaction 
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Fig. 25. 

occurs with strength 

E8 = ($) .(-I( $) = t+ , 

where the explicit minus sign is characterist>c of an antiparticle 
vertex in a vector theory. The color 8 qq state is therefore 
expected to be unbound. 

The analysis of colorless mesons is somewhat more involved. For 
a (GE) state, there are three interactions possible: 

l the color preserving 

G\ /G 

Fig. 26 

which contributes 
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ai = (g) (-,($) = -; 

the Gz + F% transition 

Fig. 27. 

which contributes 

8‘. li = (1) (-) (1) = -1 I 

and the GE+ BE transition 

87 

Fig. 28. 

which contributes 
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'iii = (1) (-) (1) = -1 

The total en~r'~y nf thn color singlet state 

is given symbolically by 

El = 3 x 2 IG?> x $ (IF.& + IB& + /GE>) , 

where the factors represent (from right to left) a projection on the 
final color-singlet state, a projection on an initial GE state, and 
the effect of all the possible initial configurations. We recover 
simply 

&l = Ei + cii t CT... = -8/3 111 
, 

an attractive interaction. 

The rather pedestrian analysis of this section has indicated 
that the color singlet qqq and q< states are likely to be the most 
stable configurations. This is pleasantly in accord with our 
knowledge of the properties of baryons and masons, and lends support 
to our choice of SU(3)C 
tions among quarks. 

as the gauge group for the strong interac- 

B. The QCD Lagrangian 

With these preliminaries behind us, we may now formulate the 
gauge theory of color triplet quarks interacting by means of vector 
gluons which belong to the octet representation of ~(3)~. The 
Lagrangian will have the standard Yang-Hills form, namely 

JZ = -%IP~G~~" + T;ll(i.+QE@ - m,~@) + 
B ' 

where (a. 6) = 1, 2, 3 (or R, B, G) are color indices for the quark 
fields and a = 1, 2, . . . . 8 is the gluon color label. The field 
strength tensor is given by 
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G=” = 2 [cap, gn,l 

where B a is the color gauge field (the glum field) analogous to the 
isospin"gbauge field buin the original Yang-Mills theory. 
covariant derivative 1s a 3 x 3 matrix in color space, 

The gauge- 

9.J = ra - 
P 

% X=0; , 

and h a 
octet. 

are the eight 3 x 3 matrix representations of the Sr~(3)~ 

These generators of SU(3) rotatiOnS are conventionally labeled 

1 
R 

6 0 

i 

1 

0 

A3 = 

AS = 

x7 = 

( 1 0 

0 

i 0 0 

i 

i 0 0 

0 

0 

-1 

0 

-i 

0 

0 ) 

0 

-i 

0 ) 

x2 = 

ha = 

h6 = 

0 -i 0 

i 00 I 

0 0 0 ) 

( 0 0 

1 

i 0 0 

0 

( 

1 
,x*=2 0 

’ 0 

1 

0 I 

0 ) 

0 

1 ) 

, 

0 

0 

cl . 

-2 ) 

In flavor SU(3), with (1, 2, 3) = (u, d, s), the matrices Al, h2, X3 
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correspond to the isospin generators Tl, 'c2, T 3 . The X-matrices have 
the following properties: 

l tr (A=, = 0; 

. tr (PXb) = 2d”b; 

l [A=, Ab] = 2ifabcAc. 

The structure constants which are completely antisymmetric in 
the indices a, b, c are most easily evaluated as 

f=bc = 2 tr (XC[X=, Xbl) 

The field-strength tensor can be written in terms of the structure 
constants as 

G;” = a& - a,,,; - gf abc b c %E$, . 

The quark-gluon interaction term contained within TiY'g,,$ is 

in matrix notation with 

QR 

$ E 

i i 

QB 

JIG 

I 

This corresponds to the Feynman rule for the quark-gluon vertex 



GAUGE THEORIES 91 

a 
ig a 

2 XaP 

Fig. 29. 

Thus the force between two quarks is proportional to 

for the transition a + y + 8 + 6. This expresses in formal terms the 
heuristic discussion of the previous section, with the identi- 
fications 

-& = (X1 + iX2)/2 

I 

etc. 

We shall assume provisionally that the local color gauge symme- 
try is exact. The infinite-range forces mediated by massless gluons 
give rise to some hope that quarks (and gluons) may be permanently 
confined. Should free quarks be found, we might later wish to 
consider the possibility that the symmetry is broken either span- 
taneously or explicitly (De RGjula, et al., 1978; Okun and Shifman, 
1979). 

C. Consequences of an Interacting Field Theory of Quarks and Gluons 

Before proceeding to a specific study of the predictions of QCD, 
let us give a qualitative discussion of the implications of an 
interacting field theory of quarks and gluons. A convenient setting 
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for this discussion is the deep-inelastic scattering of leptons from 
a nucleon2targe$,, in which a virtual photon (or intermediate boson) 
of (mass) = -Q ana 

fi 
zes the target structure on a length scale 

characterized by 1/ Q . 

According to the parton model (Feynrra", 19723, which ignores 
;:~;;cti~ssQ~o~g the quarks within a proton, the picture is rather 

Increases, the resolution becomes finer, and we are 
able to probe the elementary quark constituents of the proton, as 
shown in Figure 30. Once Q2 1s large enough for the quark to be 

Proton -~~~~~~~~.:“L” 

a Quarks 

f3 

Q2 = I GeV2 

Q2 = IO GeV2 

Q2 = 100 GeV2 

Fig. 30. Parton-model view of the proton. 
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(TJ ' ._.:- Q2=0.1 GeV2 

f3 

Q2 = I GeV2 

Q2 =I0 GeV2 

Q2 =50 GeV2 

Q2 =I00 GeV2 

Fig. 31. Interacting-field-theory view of the proton. 

93 



94 C. QUIGG 

resolved, no finer structure is seen. The quarks are2str"ct"reless, 
hav no size, and introduce no length scale. When Q e$ceeds a few 
G-2 s , all fixed ma.ss scales become irrelevant and the Q -dependence 
of structure functions can be determined by dimensional analysis. 

In an intgracting field theory, a richer picture is to be 
expected. As Q increases beyond the magnitude required to resolve 
quarks, the quarks are found to have an apparent structure, which 
arises from the interactions mediated by gluons. This is indicated 
in Figure 31. The fluctuations shown there lead to scaling viola- 
tions in deep-inelastic scattering. The structure functions 
F(x, Q2) measure the distribution of quarks in a fast-moving proton 
as a function of momentum fraction 

x = Pq"ark'Pproto" . 

As Q2 grows, the structure functions undergo a characteristic evolu- 
tion. For large x (0.3 < x < l), it becomes increasingly likely that 
a quark with momentum fractron x will be caught in mid-dissociation 
into components with xl + x2 = x: 

Fig. 32. 

For small values of x << 1, the population of quarks and antiquarks 
will be enhanced by processes such as 
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Fig. 33. 

We therefore expect, in any interacting field theory, that as Q2 
increases the structure function will fall at large values of x and 
rise at small values of x, as shown in Figure 34. It remains for a 
quantitative analysis to show whether these effects are calculable 
in a given field theory (specifically in QCD). Furthermore, it is 
observed experimentally (Perkins, 1980) that effects of the kind we 
have discussed are sxall, $,ic,h is to say that Bjorken (1967) 
scaling (by which is meant Q -Independent structure functions) is an 
excellent approximation. Can this be explained? 

o.8r---7 

0.2 0.4 0.6 0.8 I 
X 

Fig. 34. Evolution of the proton structure function in an inter- 
acting field theory: (a) low, (b) medium, (c) high Q2. 
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D. Charge Renormalization in QED and QCD 

In interacting field theories, observables such as scattering 
amplitudes may be sensitive to higher-order corrections, in addition 
to Born diagrams. The modifications to lowest-order contributions 
are in general dependent upon kinematic variables. A COnvenient Way 
of representing these modifications is by introducing a so-called 
"running coupling constant," i.e. B an effective coupling that depends 
upon the kinematic circumstances. 

For example, in Quantum Electrodynamics (QED) the corrections 
to Coulomb's law introduced by the vacuum polarization diagram of 
Fig. 35 may be represented by the substitution 

a -t a(Q2) = cc&i) [l+q$lq $)' 

Summation of higher-order corrections (retaining only the leading 
logarithms) shows this expression to be the first term in a power- 
series expansion of 

WQ2) = awl:) 
W2) , 

l- 311 ---x- log 9.f 
( ) 92 

which is more conveniently written as 

Fig. 35. &vest-order contribution to the charge renormalization 
in QED. 

*See, for example, the discussion in Bjorken and Drell (1964), c. 8. 
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a(Q2) c&t) 

Thus, given the value of th2 coupling constant at some arbitrarily 
selected momen 

1 
urn transfer qo, one has a prediction for its evolution 

to arbitrary Q . This is sketched in Figure 36. 

At shorter distances (or larger values of Q'), the effective 
charge becomes larger. This phenomenon is a familiar one in classi- 
cal electrodynamics. A test charge in a dielectric medium will 
polarize the medium as indicated in Figure 37. At any distance 
(larger than the molecular scale) from the test charge, the effective 
charge will by Gauss's law be smaller in magnitude than the test 
charge because of the opposite charge attracted by the test charge. 
Only at very short distances is the effective charge equal to the 
full magnitude of the test charge. Thus the QED vacuum is seen to 
behave as a polarizable medium. 

In non-Abelian gauge theories such as QCD there are both close 
similarities to QED and also crucial differences. coulomb's law for 
gluon exchange is modified by quark-antiquark vacuum polarization 
loops of Fig. 38 which modify the effective coupling in a way that 
can be read off from the QED calculation. For each quark flavor, the 
loop contribution is given by 

CL! 
0 

u 
\ - 

log (Q2/q2) 0 

Fig. 36. Evolution of the running coupling constant in QED. 
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Fig. 37. Polarization of a dielectric medium by a test charge. 

- / (Gg&QQ 1 -I- 
o&o 

I + ~ + + ~ 

Fig. 38. Fermion-loop contribution to the charge renormalization 
in QCD. 

2xab = "QED" x __ 4 

Thus the contribution of quark loops to the evolution of the strong 
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coupling constant is 

99 

as(Q2) - &) 1 = 
quarks 6n nfloq (Q2/qi) , 

where n f is the number of quark flavors. 

There are in addition glum loops to be considered. The Peynman 
rules fm glum self-interactions are gauge dependent and so there- 
fore is the diagram-by-diagram analysis of the contribution from 
gluon loops. A useful grouping is to separate the physically 
realizable intermediate states composed of "transverse" gluons (gT) 

Fig. 39. 

which give a contribution 

a’, tq;, 
4n log (Q2/‘i;) 

that differs from the quark loop contributions only by spin factors. 
The remaining loops, which correspond to virtual states that are not 
physically realizable because they include "Coulomb gluons" (gc) 

Fig. 40. 
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yield a contribution that is twelve times larger, and opposite in 
sign, 

71 log (Q2/qo2) . 

Taken together, the net contribution of the gluon loops is nega- 
tivecharacteristic of antiscreening. 

I know of no simple quantitative argument which explains how 
this ccmes about. The possibility of antiscreening can be understood 
in qualitative terms, as shown in Figure 41. Suppose our "test 
charge" is a blue quark at-the origin, and the probe we employ to 
measure its charge is a RB gluon. It may happen that befo_re the 
probe reaches the origin, the blue quark radiates a virtual BG gluon 
and thus fluctuates into a green quark--to which the probe is blind. 
Rather than being concentrated at the origin, the net color charge 
will thus be distributed throughout the gluon cloud. Therefore only 
by inspecting the test charge from long distances will one be able to 
measure its full effect. Apparently the first to notice the FOsSi- 
bility of an antiscreening term in "on-Abelian gauge theories was 
Khriplovich (1969). 

I" QCD, the combined effect of all the quark and gluon loops is 
to produce a running coupling constant which in leading logarithmic 
approximation is given by 

,BG 

0 B 

$@@f 
RB 

0 G 

/ 
REi 

a) b) 
Fig. 41. (a) 6 gluon probe incident on a blue quark may find 
(b) the blue charge dispersed as a result of vacuum fluctuations. 
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l/as (Q*) = w*(q;) + 
33 - 2rlf 

12n log (Q'/qi) . 

So long as the number of quark flavors does not exceed 16, the 
coefficient of the logarithy is positive and the effective coupling 
becomes smaller at large Q or short distances. In other words, 
there is net antiscreening. The profound significance of this 
circumstance for a calculable theory of the strong interactions was 
recognized by Gross and Wilczek (t973) and Politzer (1973). The 
existence of a regime in which a (Q ) << 1 implies a realm in which 
QCD perturbation theory should %e valid. This property of non- 
Abelian gauge theories is known as asymptotic freedom.g While it by 
no means justifies all the hypotheses of the parton model, it does 
make it play ible that at very short distances (i.e. when examined by 
very-high Q probes) quarks may behave nearly as fre$ particles 
within hadrons. As the sketch of the evolution of l/a (Q ) in Figure 
42 shows, the growth of the coupling at large distanced indicates the 
existence of a domain in which the strong interactions become 
formidable. This strong-coupling reginx undoubtedly is of key 
importance for quark (or color) confinement. 

Fig. 42. Evolution of the running coupling constant in QCD. 

'Reviews of asymptotic freedom include those by Politzer (1974), 
Peteixan (1979), and Berestetskii (1976). Applications of pertur- 
bative QCC are emphasized by Buras (1980), Brodsky (1979), and 
f:ovikov, et sl. (1978). 
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E. Perturbative QCD: An Example 

The simplest illustration of QC,D-perturbation theory is the 
calculation of the cross section for e e annihilation into hadrons. 
In the parton model, this process is represented by the elementary 
transition illustrated in Fig. 43, which yields a cross section 

(I parton = $ 3 1 +(s - 4rnq2' I 

quark 
flavors 1 

where the factor of three in the numerator is a consequence of quark 
color and the theta-function is a crude representation of threshold 
kinematics. 

TO the extent that c( is small, it makes sense to compute the 
strong-interaction (QCD) c?orrections to the parton model in pertur- 
bation theory. The first-order radiative corrections, which are 
characterized by the diagrams of Fig. 44, yield (Jest and Luttinger, 
1950; Appelquist and Georgi, 1973; Zee, 1973) 

i 

CY (S) 
01(S) = uparton (s) 1 + -+ + @(a;) 1 

The strong-interaction corrections are 

l Calculable (and free of infrared problems); 

s 7i 

e- I e+ 

Fig. 43. Parton-model description of electron-positron annihila- 
tion into hadrons. 
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x x 
Fig. 44. Lowest-order strong-interaction corrections to electron- 
positron annihilations into hadrons. 

l Small, in the asymptotically free region (and the @ (c2) 
corrections (Chetyrkin, et al., 1979; Dine and Sapirstein, 1978; 
Celmaster and Gonsalves, 1980) are not enormous); 

l Positive: and 

l Decreasing with increasing s. 

The effect of these corrections to the parton model is shown sche- 
matically in Figure 45, in which the quantity 

R: a(e+e- + hadrons) 

o(e+e- + p+M-) 

is plotted as a function of energy. 

Although QCD prescribes the evolution of the2strony coupling 
constant, it does not specify the magnityde Of ar(qo). We are thus 
left to wonder at what value of s (or Q ) w+First-order pertur- 
bation theory be trustworthy. The value of C (q ) nust be determined 
experimentally, and the absence of a Thomson Slir?it in QCD makes this 
a nontrivial task. Two estimates, which perhaps represent reason- 
able extremes, are shown in the Table. 
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‘;i 
& 5 
z +a 
I t Ii 
” +a, 
TTg 

4 

1 \ 4 
2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._.... ----- -**- . . . . . . ,. . .: 

t”~ 1 
O1 

I I I I 
I 2 3 4 

Fig4 45. $chematic behavior of the ratio h = o(e+e- -f hadrons)/ 
o(e e + p !.I ) as a function of energy in the parton model (steps) 
and including lowest-order QCD corrections (smooth 2 urvej . The 
dotted curve corresponds to a smaller value of a,(qo). 

I* 

s (Ge h A B 

1 0.30 2.9 
1: 0.22 0.67 

$ 16 cc 10.2 0.5 1 
0.19 0.43 

100 T 0.15 0.28 
1000 PETP.A/PEP 0.12 0.20 

What do the data $.a~?' There is as yet not a good test of the 
QCD corrections to o(e e + hadrons) because 

. u(e+P- + .C+S-) is imperfectly subtracted; 

* Systematic errors ace *15%, which is also the size of the 
disagreement between various experinents; 

- 
'A recent assessment is given by Barnett, et al. (1980). 
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e 

lorimeter 

I photon beam ’ 

Fig. 46. Conceptual experiment to measure the momentum spectrum of 
electrons in a beam prepared as monochromatic. 

l CL (s) is not well known from other experiments; perhaps it can 
best be 8easured here. 

F. Radiative Corrections to Deep-Inelastic Scatterinq 

The evolution with Q2 of deep-inelastic structure functions may 
also be analyzed in QCD perturbation theory. To make clear the 
logical structure, it is helpful to revert to QED and to consider a 
Gedankenexperiment to measure the momentum spectrum of electrons in 
a "monochromatic" beam, as shown in Fig. 46. The (perfect) calo- 
rimeter measures the energy of the backscattered photon and 
therefore determines the energy of the electron. If the momentum of 
the prepared beam is defined to be 1, then in zeroth order the 
momentum distribution in the beam is 

dN 
dz = N6(z - 1) 

where 

z - = (measured momentum)/(prepared momentum) . 

The virtual dissociation 
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Fig. 47. 

induces in the beam a component with z < 1. The Spnsitivity of the 
apparatus to these fluctuations is a function of q , as suggested by 
uncertainty principle arguments. The fluctuations are calculable in 
QED. 

Define the parameter 

T E 109 (Q'/q;, 

and let 

LP 2n .,(z)dr 

represent the probability of finding an electron carrying a fraction 
z of the parent electron's momentum. Then if e(z, T) is the number 
density of electrons observed in (z, 
ing power characterized by T, 

z + ds) by a probe with resolv- 
it follows at once that 

2 (2. T) = +$- j)y /ol dzh(*y - x)e(y, ‘c)Peo(z) 

= (x(T) 
/ 

1 
a! 2n x y e(Yr T)P,,,(Z) 

For an initial distribution 

e(Ye T) = N~(Y - 1) , 
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we recover 

107 

de 
dT (xv Q = 2n 

Nccop 
ete fx) 

By virtue of the same fluctuations, there 
the beam. Let 

are also photons in 

4P 
271 yfe (2)d-c 

be the probability of finding a photon carrying a fraction z of the 
parent electron's mcnentun, and let Y(z, T) be the number density of 
photons observed in (2, z + dz) by a probe with resolving power 
characterized by T. We may imagine a Gedankenexperiment to observe 
th?se $mtor.s, as for cxemple depicted in Fig. 48. If the source of 
the virtual photon probe is (for example) a nitrogen nucleus, the 
Gedankenapparat can be recognized as a surrogate for the development 
of electromagnetic showers in. the atmosphere. Indeed, the theory of 
cascade showers (Rossi, 1952) has much in common with the present 
discussion. The evolution of the photon distribution is given by 

s% (x CL(T) 
J 

1 
s!Y do , T) = 2n x y e(YJ T)P.(+(x/y) 

Virtual photon beam 

/ 

Observer ~ 

Fig. 48. Conceptual experiment to measure the momentum spectrum of 
photons in an electron beam prepared as monochromatic. 
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Of CO"rSe, the photons may themselves fluctuate 

Fig. 49. 

so we are led to define 

2, 2n e+-y(z)dT 

as the probability of finding an electron (or positron) carrying a 
fraction z of the momentum of the parent photon. 

The evolution of an electron distribution is now given by 

ae a(T) 1 dT (X# T) = 2n a! J c x y e(y, OPe* WY) + Y(Y, T)Pecu(X/Y) 1 . 
The induced positron component will obey an equation identical in 
form, 

g a(T) 
dT (X, T) = 7 e(Yr T)Pe+,(x/y) + y(y, TIP 'cyw/Y) , 1 

while the photon component evolves according to 

2 Lx, T) = y- I 
l&Y 

x Y PY+e (X/Y) [ 
ew. T) + e(Y, T) 1 . 

It is convenient to define moments of the distribution func- 
tions as 
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/ 

1 
M"(T) 5 dx x n-l 

ecx, T) , 
0 

s 

1 
S"(T) s dx x*-l- etx, T) 

0 

The evolution of the moments is then easily computed. It takes a 
particularly simple form for the combination M"(T) - E"(T), for 
which 

J 
1 

-$ (M,(T) - En(T)) = dx x n-l 
C 

- 
s (X, T) - E (X, T) 

= 2 lo',, 1,lF Pe&:,y)Y+[e(y, T) - ;(y, .)I 

1 

Jold(;) ,- dy yn-$ 0'. T) - :(Y. i-,+ n-lpe,(x,y) 

a =z C M,(T) - E,,(T) A,, 1 
where 

/ 

1 
A Z n 0 

dz z"-~P~&z) 

Writing 

A,(T) E M"(T) - G"(T) 

we have that 

a( -i) d log ($,('))/dT = 7 A" 

If the effective coupling evolves as 

a(T) = a(O)/[l + &(0)-r I 

the differential equation is easily integrated to 

I 
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a(O 

= 2na(O)b log (1 + ba(O)7) 

= &log (*) 

We therefore predict that 

A 1-c) n= r 1 gf-Q -An/2nb 

A,,(O) a(O) 
In QED, we have seen before that b = -1/3v, SC that 

A (1) 
.A-.= c 1 CL(T 3~~12 

A,(O) c(O) 
Thus, we have a prediction for the q2-evolution of the moments 

and cln especially sir,ple prediction for 

10s [An(r)/An(0)l A 

log [Ak(~)/Ak(0)l = < 

These specific forrs are valid in first-order perturbation theory, 
although it is possible to incorporate higher-order corrections by 
iteration. The evolution of the moments is completely specified by 
the exponents A which may be calculated without 
electron and ph&on distribution functions. 

reference to the 

tion 0: 
To describe the evolu- 

individual moments, rather than moment-by-noment ratios, it 
is necessary to know or determine the coupling constant c,(O). 

I" fact, 
to QED. 

nothing of the procedure we have followed is specific 
The same method can be adapted to QCD, as was done by 

Altarelli and Parisi (1977) , by identifying the electron, positron, 
end photon distributions as quark, antiquark, and gluon distribu- 
tions, and allowing for the possibility of a gluon fluctuating into 
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two gl"o"s. 

The so-called splitting functions P. .(z), 
computed in perturbation theory, satisfy '&+me obvious sum rules. d 

which are to be 

Fermion number conservation, 

111 

/ c -i 
dx $ (x. T) - % (x, T) 1 = o 

implies that 

Here the superscript i has been introduced as a flavor index for the 
quarks. Womenturn conservation, 

imposes two constraints: 

qcq(2) + Pg+q(z) 1 = 0 

2" P f qtg(z) + P g+gw = 0 , I 
where nf fenotes the number of quark flavors. In addition, momentum 
conserretron et the elementary vertices requires e number of swe- 
try properties to hold for z # 1: 

P q+q(z) = Pgts(l - 2) 

P qtgw = Pqcg(l - 2) 

P gcgw = Pgts(l - 2) 
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The computation of the splitting functions is described in 
detail in the paper by Altarelli and Parisi (1977). The procedure is 
straightforward: 

l For z # 1, P. 
matrix element. l+j is related to the square of an elementary 

l The strength of a 6(z - 1) term in P. ., reflecting the 
possibility that there be no fluctuation, 
the integral constraint equations. 

izlfixed by imposing 

The resulting exponents for QCD are 

A,(9 + q) = 

r A,(q+g) = 2 C 
n2 +n+2 

"(" t l)(" + 2) 1 
A,(g+g) 2 = 3 -+ + 2 

rl(" - 1) + ( n + 1) (n + 2) 

In any field ~theory, the splitting functions and hence the 
exponents are calculable in perturbation theory. A weak-coupling 
theory such as QED can be expected to give reliable results at lbw 
orders in perturbation theory. For the strong interactions, only an 
asymptotically free theory (such as QCD) presents any hope that low- 
ordes perturbation theory should be reliable. Of course, the value 
of Q at which first-order results become trustworthy is not speci- 
fied a priori. Specific numerical results for the q+q (nonsinglet) 
exponents in first-order QCD are: Al = 0 (by fermion number conser- 
vation), A 
A7 = -4.89: 

= -1.78, A = -2.78, A4 = -3.49, A5 = -4.04, A6 = -4.50, 
(See Prob%em 10.) 

Professor Perkins has dealt at length in his lectures (Perkins, 
1980) with the comparison of QCD and experiment 
therefore be quite brief. 

My remarks will 
We have seen that the Q2-evolution of the 

V¶ (*Onsinglet) moments is given by 
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A"(T) 

In QCD, the running coupling constant is 

a (01 CL (01 
-5--- = 1 + -+ (33 - 2nf)7 
Cs(T) 

which is to say that 

b = (33 - 2nf)/12n 

Hence the evolution of the moments becomes 

as(0)(33 - 2nf)7 1 
6An/(33 - 2nf) 

A,(T) 12 

It has become conventional to write 

1qq~1 E 
(33 - 2nf) 

12rr log (l12/A21 , 

so that 

l/as (71 = l/as(O) + 
(33 - 2nfl 

12n 7 

is equivalent to 

Us(Q21 = 12n 

(33 - 2nf)log (Q2/A2, ' 

which, it must be remembered, becomes nonsensical for Q 2 L: A2 . 

At issue are several points. The form of the moment-evolution 
equation is qualitatively valid. With A < 0 and 3f! - 
correctly predicted to decrease with i&easing Q . 

2nf> O,Anis 
The quantlta- 

tive reliability is more delicate to assess. Numerical fits 
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determine, in principle at least, CL (Q2) or A*. However there are a 
few ambiguities. These have to c?o with the self-consistency of 
first-order perturbation theory, the importance of nonleading- 
logarithmic corrections, and the choice of the effective number of 
quark flavors, in addition to the self-consistency of the fitting 
procedure itself. The moment-by-moment prediction is a much less 
differential tes .$, but has the virtue of giving a single number. In 
this case, the A -ambiguity is absent--or at least hidden. 

G. Status of QCD 

Quantum Chromodynamics incorporates many of the observed sys- 
tematic* of the strong interactions in an elegant way that is in 
accord with currently-held theoretical prejudices. It promises 
calculability for the strong interactions in an unspecified asymp- 
totically free regime. Some observable*, such as 

+- * cJ(e e -t hadrons), and 

l scaling violations in deep-inelastic scattering 

hint that the domain of computability is not far away, and may 
already be accessible to experiment. Although there are many reasons 
for pessimism (which is sometimes known as realism), one may sensibly 
imagine a quantitative verification of the perturbative aspects of 
QCD within five years. 

In the nonperturbative regime, which presumably has to do with 
confinement, there are numerous qualitative hints that color con- 
finement may emerqe. A detailed understanding of the hadron spectrum 
appears to require new mathematical inventions. Experimentally, it 
iS most important to test the confinement hypothesis b? searching 
for free quarks or for the signatures of unconfined color. It is not 
acceptable blithely to ignore the evidence for fractionally charged 
matter (LaRue, Phillips, and Fairbank, 19801, r>erely because the 
results seem unlikely or because they conflict with QCD orthodoxy. 
Sensitive negative searches for quarks continue to be interesting, 
and the convincing observation of free quarks would be revolutionary 
(see Lackner and Zweig, 1980). 
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7. GRAND UNIFICATION 

A. Motivation' 

With Quantum Chromodynamics and the Weinberg-Salam theory "in 
hand," what remains to be explained? In fact there are many 
observations which are explained only in part, or not at all, by the 
separate gauge theories of the strong and weak and electromagnetic 
interactions. 

. The mixing parameter sin28 
three coupling constants: aEM,'%, 
be reduced to two or one? 

i* s;;!pgt:fryp and there are 
Could this number 

. Quarks and leptons both are spin+, "fundamental" consti- 
tuents. Are they connected in any way? 

. The leptonic and hadronic charged weak currents are identical 
in form: 

115 

WL Co). 
Why this pattern? How many quark and lepton generations are 
there? 

l Why is Q(e) + Q(p) : 01 Why is Q(v) - Q(e) z Q(u) - Q(d)? 
Vhy is Q(d) = (1/3)Q(e)? Why is Q(v) + C(e) + 3Q(u) 
+ 3Q(d) = O? 

l Fermion masses and mixing* are arbitrary. (Why) is the 
neutrino massless? Higgs couplings are arbitrary. 

l The strengths of wea and electromagnetic interactions become 
comparable for s >> 1 2 . 

l 2It is conceivable that crs(Q2) -+ aEM for very large values of 
Q . 

. Gravitation is absent. 

These observations provide rr.otivations which fall into several cate- 
gories. Some argue for a qualitative quark-lepton connection. 

'Cogent summaries are given by Harari (1978), Wilczek (1979). and 
Gaillard (1980). 



116 C. QUIGG 

Others inspire a more complete unification of weak and electro- 
magnetic interactions, perhaps in the form of an additional gauge 
symmetry such as 

G 3 SU(2jL '8 U(l) 

which would fix 8 
7.. 

Still others suggest a "Grand Unification" of 
weak, electromagne x, and strong interactions. The energy at which 
a =a sets the scale at which grand unification is realized. This 
wguld aytomatically complete the unification of weak and electromag- 
netic interactions. Finally, 
Unification" 

it is possible to entertain a "Super 
which would include gravitation as well. Elaboration 

of this possibility will be deferred to a later St. Croix school. 

One cannot fail to notice that both QCD and the Weinberg-Salam 
theory are gauge theories. It is therefore natural to base grand 
unification on a simple group G 3SU(3Jc @ SU(2) @ U(l), in order 
that there be a single coupling constant. The mass scale at which 
the symmetry is attained calp e estimated from the evolution of the 
running couplings to be x10? GeV. The gauge group G will contain 
extra gauge bosons beyond W Z", Y, and gluons, which will carry 
both flavor and color properties. They are presumably very massive, 
because their effects are unfamiliar to us. One may speculate that 
all colored gauge bosons will be confined, along with the quarks and 
gluons. 

Once grand unification is undertaken, there is no reason not to 
assign quarks and leptons to the same representation. Baryon and 
lepton conservation may be violated because exact conservation would 
reqcire a ma**les*, and unobserved,gauge boson. It is therefore 
likely that neither baryon number nor lepton number will be conserved 
exactly. 

B. Sti(5) 

The minimal example of a grand unified theory is the W(5) model 
introduced by Georgi and Glashow (1974). To analyze the structure of 
this model, it is helpful to refer to an SKI(~) @ SU(3) decomposition 
of the low-dimensioned representations of W(5): 
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SU(5) (.9J(2), SU(3)) 

5 3 (2, 1) 63 (1,3) 

5* 3 (2, 11 63 (1. 3*) 

10 1 (2, 3) c-3 (1, 3*) CR (1, 1) 

10* 3 (2, 3*) @ Cl? 3) CD (1, 1) 

24 = 24* (1, 81 CT3 (2, 3) CB (2, 3*) 
@(3, 11 tt, (1~. 1) 

The first quark-lepton generation may be regarded as 15 left-handed 
(two-component) fernions, namely 

2 leptons We' e-j , 

1 antilepton e+ 

6 quarks (u,, u,, uG, dR, dB, dG) I 

6 antiquarks (GR, LB, iG, zR, zB, dG) . 

These may be assigned to SU(5) representations as 

“e 
e- 

5* = 
d, 

;i, 

2 
G left 
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and 
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10 = 

0 
+ 

e dR dB dG 
+ -e 0 UR uB UG 

-dR -u R 0 u G -U B 

-dB -u B -u G 0 UR 

-dG -u G "B ZR 0 left 

Although it would have been pleasing to assign all the particles of 
the first generation to a single irreducible representation (as can 
be done (Ramond, 1980) in the closely analogous group SO(lO)), there 
is nothing objectionable about this assignment. The assignments are 
guided by the tracelessness of the electric charge operator 
(CQi = 01, which is a generator of SU(5). 

Constructing a gauge theory by the usual procedure, we en- 
counter 24 gauge bosons: 

Y 1 

w+, w-, z" 3 

glue"* 8 

X +4/3 3x2=6 

$1/3 3x2=6 

where the y and z" acquire their ultimate identities only after the 
SU(2) @ U(1) syrzratry is broken down to U(1) (see Buras, et al., 
1978). The fermion-gauge boson couplings pre%nt in the Lagrangian 
include those which occur in SU(3)C 8 W(2)@ U(1): 

U(l) glBFi 1 &"Yf 

fernion 
species 
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SU(2) g2gp ’ 
quarks 

su(3)C g3G; 2 &'A% 
quarks 

together with the couplings of the new leptoquark bosons: 

i 
g4x!.l xyLpeL + E . u, yp";L 

Ilk IL 
+ zLyl-ldiL + h.c. 

gLYuVL + E.. ;. y"dFL 
Ilk IL 

+ ZLYVUiL t h.c. I 

where (ijk) are color-triplet indices (RBG) and qc denotes a charge- 
conjugate quark spinor. The coupling constants gl...g5 are all to be 
releted at the unification mass by the group structure. 

The new vertices in the theory, summarized in Fig. 50, mediate 
transitions such as proton decay, which proceeds via three elemen- 
tary processes that change baryon number and lepton number by -1 and 
;~F;;~wqym$r bg -4. These are shown in Fig. 51. The intermediate 

, 2 acquire masses according to the usual spontaneous 
symmetry breaking procedure. The leptoquark bosons X and Y must be 
endowed with enormous masses by means of a similar scheme, for the 
theory to survive the existing bounds (Reines and Schultz, 1980) on 
the proton lifetime, 

T(P) > * x 103Oy x r(p + i-I + X)/r(P -+ all) 

The necessary symmetry breaking can be achieved in two steps. 
First, a real& (of scalar fields) is introduced to break SU(5) down 
to su(3)C@ SU(2) 63 U(1). At this step the X and Y leptoquark bosons 
aaquire mass. Next, a complex & (of scalar fields) is employed to 
break SU(3)C@ SU(2) @ U(1) down to SU(3)C@ U(l)EM. This is the 
straightforward extension of the symmetry breaking in the V7einberg- 
Salam theory, in which a colr.plex scalar SU(2) doublet breaks 
SU(2) @ U(1) down to U(1) The spontaneous symmetry breaking 
gives rise to many physical%ggs scalars. From the 2, after twelve 
of their fellows have become the longitudinal components of massive x 
and Y vector bosons, there remain massive scalars with quantum 
numbers specified by 
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ve = y/y” 

a = /-“‘ 

Fig. 50. New femion-fermion transitions which appear in the grand 
unified theory SU(5). 
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d 

u U 
-1 7T” 

d e+ 

Fig. 51. Some mechanisms for proton decay in SU(5). 

(1, 8) CB (1, 1) @ (3, 1) 

which nay be hoped to have masses comparable with thoge of X and Y. 
From the complex 2, only three fields are eaten by W , W , and Z". 
There remain as physical particles the normal (1, 1) Riggs scalar, 
still with unknown mass, plus 

(1, 3) CT3 (1, 3*) 
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+1/3 a color triplet h- . These leptcquark Hiqqs bosons can mediate 

Fnts n decay, by transitions analogous to those that are mediated by 
It is therefore necessary to arrange locally gauge-invariant 

-~yyEe nq the 2 and z fields which will yield enormous 

The minimal N(5) theory has numerous attractive features. 

l It contains SU(3)C @ Su(2)@ u(1). 

0 The charged currents are V - A. 

l The neutrino is automatically massless. (A virtue for the 
moment; otherwise see SO(lO).) 

l Charge is quantized. 

l Masses of leptoquark bosons can be mady91arge,2but below the 
Planck mass MP E ,'tic/GNewton = 1.22 x 10 GeV,'c . 

l The weak mixing angle, sin' BW = 0.20, in approximate aqree- 
ment with experiment. 

l Proton decay is possible, and may lead to an understanding of 
the apparent baryon excess in the universe (Sakharov, 1967; 
Yoshimura, 1978; Toussaint, et al., 1979). 

' SU(5) provides an existence proof for grand unified theories, 
an6 seems to show that s unification ci the strong, weak, and 
electroinaqnetic interactions con meaningfully be achieved with- 
out gravitation. 

There are as well a number of problems to be faced. 

l Each family or generation is reducible. 

l h'hy do generations repeat? How many are there? 

l Why are there S12 orders of magnitude between the mass scales 
at which the two symmetry breakinqs occur? Is it possible to 
maintain the result 

beyond lowest-order perturbation theory? 

l Gravity is omitted. 
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l No insight is gained into the nature of fermion masses or 
mixing angles. CP-violation in the weak interactions does not 
arise gracefully. 

At a minimum, grand unification reminds us that we do not 
understand baryon and lepton number conservation. It therefore 
becomes an experimental imperative to probe the soft spots in search 
of neutrino masses, violations of lepton number, and evidence for 
proton instability. For my part, I attach little significance to 
specific numerical predictions of grand-unified theories. To the 
extent that they set inviting targets for experiment, they are 
undoubtedly of inspirational value. But the path between qrand- 
unifying gauge group and experimental tests is often long, winding, 
and slippery! 
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8. OMNE IGROTUM PRO MAGNIFICO 

I began these lectures by remarking upon the widespread belief 
that a grand synthesis of physical law is at hand. Our subsequent 
discussions have demonstrated the power of gauge principles as 
sources of the fundamental interactions. Gauge theories are renor- 
malizable, may be asymptotically free, and have been known to agree 
with experiment. But how are we to choose a gauge group? 

The minimal strategy of grand unified theories, as we have seen 
in Chapter 7, is to find a simple gauge group which contains the 
"well-established" color and flavor groups SU(3)c@ w(2),,@ u(1) . 
This is not a unique guiding principle. It nevertheless seems TO 

many of my colleagues that the only interactions in Nature are those 
we know plus those required to complete the grand (or later, super) 
unification. By extensions of this reasoning, many conclude that a 
vast desert awaits us; that no interesting new phenomena will occur 
between the mass of the intermediate bosons of the weak interactions 
and the mass of the leptoquark tosons. Ristory does not encourage 
such a bleak view, but it is fair to argue that our illustrious 
predecessors who erroneously thought the end was in sight did not 
have local gauge invariance beside them, to guide them. 

I labor under different delusions: that there will be new 
surprises, new phenomena, and that everything we don't know will turn 
out to be wonderful. Although the grounds for this simple faith are 
largely neurochemical, it may have some basis in physics. Within the 
framework of gauge theories (for we know nothing else), who is to say 
that we have already noticed all the gauge symmetries relevant at 
moderate energies? Without experimental searches or a comprehensive 
understanding of the physical origin of gauge invariance, this is 
merely attractively economical speculation. That the known running 
coupling constants should meet in a single point is likewise the 
simplest, but not the only, possibility. I expect pleasant sur- 
prises! 

In addition to the interaction problem, there is the problem of 
the fundamental fermions. We do not understand generations, masses, 
mixing angles, or CP-violation. The elementary Hiqqs boson reali- 
zation, which we have discussed, has an unappealing arbitrariness 
and proliferation of parameters. Dynamical symmetry breaking 
schemes promise succor to those who would believe ours to be the only 
possible world. The right such scheme has not yet emerged. An 
alternative approach is to impute structure to the quarks and 
leptons, and to seek simple patterns at the next level of fundamental 
constituents. Still another is to hope that the inclusion of gravity 
Will prove so restrictive as to compel the existence of the universe 
a* we find it--no more, and no less. 

Within the conventional framework, there remains the issue of 
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color confinement, and of the hadron spectrum. It is my feeling that 
new mathematical inventions and perhaps new physical imagery will be 
required before a theoretical solution is in hand. 
mental side, 

On the experi- 
much remains to be learned about the hadronization of 

quarks and qluons, end about the hadron spectrum itself. The 
Tevatron and the new pp colliders will have much to say in answer to 
questions that we can now pose only vaguely. 

I hope these lectures have communicated not only a few facts, 
but also a feeling that there is much to be done that is significant 
and exciting, that there are many opportunities to contribute to this 
numinous intellectual adventure in which we all share. 
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Problem 1. Analyze the absorption of a virtual photon by a 
spin-l/2 quark in the Breit frame (brick-wall frame) of the quark. 
Kinematics: 

incident: 

yv a/u---- q 

(pZ,E) = (QrO) (4g) 

outqoinq: 

(a) Show that the squared matrix element for the absorption of a 
longitudinal photon vanishes. 

(b) Compute the square of the matrix element for absorption of a 
photon with helicity = +l, i.e. a transverse photon. 

(c) How hould your result for a longitudinal photon differ if the 
incident quark and photon were not precisely (anti)collinear? 

Problem 2. 

(a) Compute the differential cross section g and the total 
(integrated) cross section 

of,d$$f +- 
or the reaction e e -f p+)l- . 

Work in the c.n. frame, and in the high-energy limit (where 
lepton masses may be neglected). Assume the colliding beams 
are unpolarized and sum over the polarizations of the 
produced muons. 
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lb) Lpj UP the evidence for q: jets in the reaction 
e e +hadrons. 1 G. J. Hanson, et al., Phys. Rev. Lett. 35, 
1609 (1975).] NOW cornput? -th$ -differential cross section 
do/da for the reaction 2 e +I,I p , assuming the initial beams 
are transversely polarized. See also R.F. Schwitters, 
et al., Phys. Rev. Lett. 35, (1975). 

Refer to Bjorken and Drell or a similar textbook for help 
with the computation. 
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Problem 3. 

Assume that the charged weak current has the left-handed form 
discussed in class, and that the interaction Hamiltonian is of the 
"current-current' form, 

5pw s JJ+ t J+J . 

(a) Enumerate the. kinds of interactions (i.e., terms in the 
Hamiltonian) that may occur in a world composed of the 
electron and muon generations 

“e v!J 
0 0 - e L lJ L 

(b) List the leptonic processes which are consistent with the 
know" selection rules but do not occur - in%. Example: 

"~-Fie* 

Problem 4. 

Now consider the interactions of a single lepton doublet 



128 C. QUIGG 

with a single quark dbublet 

(a) In the limit of large incident energy, and neglecting the 
electron mass, calculate the differential cross section 

and integrated cross section 

u = $dil C" da/& C!" 

for the reactions 

(i) ve + d + e- + u 
+ 

(ii) ve + u + e + d . 

Assume that the quarks have a common mass, m 
Q 

. 

(b) Discuss the difference in the cross sections for (i) and 
(ii), and provide a physical explanation for it. 

Problem 5. 

Use the requirement that the Laqrangian be invariant under a 
continuous symnetry to deduce the conserved quantity corresponding 
to a transformation. Show that invariance under 

(i) translations in time 

(ii) translations in space implies conservation 

(iii) spatial rotations 

(i) energy 

of (ii) momentum 

(iii) angular momentum 

reference: E.L. Hill, Rev. Mod. Phys. 2, 253 (1953). 
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Problem 6. Derive the Yang-Mills Lagrangian for a scalar 
theory in which the three real scalar fields correspond 
triplet representation of W(2). The basic Lagrangian is 

field 
to the 

.cz= $ (autj2 - m2t2 
[ 1 , 

with @+ t=$o . 
i:l +- 

Problem 7. 

Analyze the spontaneous breakdown of a global SU(2) symmetry. 
Consider the case of three real scalar fields $l,@,,$,, which 
comprise an SW(Z) triplet, denoted 

$1 

i=@2 . (:I $3 

The Lagrangian density is 

2= ~cap~~~ca~ip_~ - q-i) I 
where as usual 

2 

v=+jyt+$(e,2 . 

Assume the potential has a minimum at 

Then show that (1) the Lagrangian remains invariant under T 
The particles associated with Tl and T2 become 

3; (2) 
massless 
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(Goldstone) particles; (3) The particle associated with T 
acquires a mass = J-2p*. 3 

Problem 8. The Ginzburg-Landau Theory of Superconductivity 
provides a phenomenological understanding of the Meissner effect: 
the observation that an external magnetic field does not penetrate 
the superconductor. Ginzbur 
parameter" JI, 
superconducting 

SU~I&!Z,, I$]' Ti" r?"adtzl :~'r~~~ede~~i;~d~: 
In the absence of an impressed field, 

expand the Free Energy of the superconductor as 

G super(0) = Gnormal(0) + +!'I2 + 8bi'14 , 

where cx and B are phenomenological parameters. 

(a) Minimize G (0) with respect to the order parameter and 
discuss tR~pe6ircumstances 
breaking occurs. 

u?des which spontaneous symmetry 
Compute I $. I , the value at which G 

is minimized. super(O) 

(b) In the presence of an external field H 
e' a gauge-invariant 

expression for the free energy is 

HZ 
G 

Super ('e) = Gsuper(") + & + y$ $+(-i@ - $A)2$ . 

C The effective charge e* turns out to be 2e, because I$/* 
represents the density of Cooper pairs.] Derive the field 
equations that follow from minimizing G (H ) with respect 
to \Ir and &. Show that in the weak-fiel%$?$ro~imation (VJPO, 

@$o) the photon acquires a mass within the supertionductor. 

Problem 9. 

Compute the differential and total cross sections for U e and 
U e elastic scattering in the Weinberg-Salam model. 
l&it of large MW, MZ. 

Work :n the 
The computation is done most grac.&fully by 

Fierz reordering one of the graphs. 
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Problem 10 . Using the Altarelli-Parisi approach and working to 
lowest order in perturbation theory, show that in a theory of 
colored quarks interacting by means of scalar yluons the 
non-singlet critical exponent is 

131 

ANS " = 2 '2"'['- n(n:l) ] . 

where C2(R) = (N2-1)/2N for SU(N)C. Predict the slopes of 

(i) MS/M3 

(ii) M6/M4 . 
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